CHEM 205 section 03	
LECTURE #17	Thurs., March 6, 2008
LECTURE TOPICS:	
TODAY'S CLASS:	continue Ch.7
NEXT CLASS:	finish Ch.7

(1)

7.3 Atomic line spectra & Niels Bohr...

Atomic spectrum of <u>PURE</u> H	2: a LINE spectrum
Expose hydrogen (H ₂) to high-energy spark	Resulting H atoms are "excited"
 Het H₂ molecules absorences of the energy ⇒ breaks bonds + other, non-visible lines: some in UV region, "atom some in IR region 	H-H release extra energy as PHOTONS hic emission spectrum" of specific energies (λ's)
410 nm 434 nm 486 nm	656 nm
 Application = glowing electric "neon" signs for a molecular substance like elemental hydrogen, relaxed atoms at end reform H₂ or react with other stuff (= loss) for noble gases: unreactive free atoms ⇔ no losses ⇔ useful 	

Why are atomic spectra LINE SPECTRA?

E.g., ATOMIC SPECTRUM OF NEON: looks red-orange to the eye 400nm 500nm 600nm 700nm When an atom decreases its energy level by a discrete increment $\Delta E \Rightarrow$ a PHOTON is emitted with E = hv = ΔE $\Delta E_3 = \frac{hc}{\lambda_3}$ Discrete allowed E levels for hydrogen atom $\Delta E_2 = \frac{hc}{\lambda_2}$ (closer & closer E together as $E \uparrow$) $\Delta E_1 = \frac{hc}{\lambda_1}$ Zumdahl's ← Lowest E state Figure 7.7 (4) = "ground state"

E.g., Exciting an electron: in <u>one</u> H atom from the n=2 to n=4 state: △E = - (2.181×10⁻¹⁸ J) × [(1/4²) - (1/2²)] = + 4.089×10⁻¹⁹ J ⇒ absorb a 486nm photon (bluish-green...)

c.f., Ionizing an atom: eject e⁻ from atom (from n=1 to "n= ∞ " state): $\Delta E = -(2.181 \times 10^{-18} \text{ J}) \times [(1/\infty^2) - (1/1^2)]$ $= + 2.181 \times 10^{-18} \text{ J} = \text{ionization energy (91nm photon, deep UV)}$

ASSIGNED READINGS

BEFORE NEXT CLASS:

Read Ch.7 up to section 7.3

(9)