CHEM 205 sect	ion	03
---------------	-----	----

LECTURE #19 Th

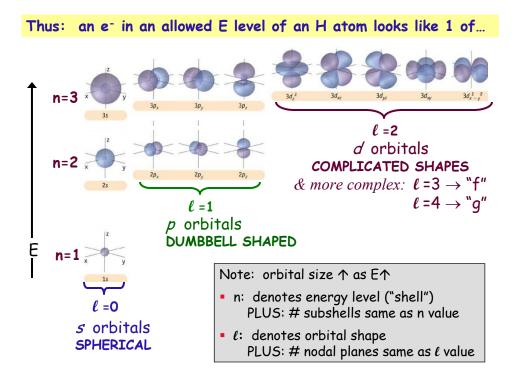
Thurs. March 13, 2008

LECTURE TOPICS:

TODAY'S CLASS: finish Ch.7, start Ch.8

NEXT CLASS: finish Ch.8

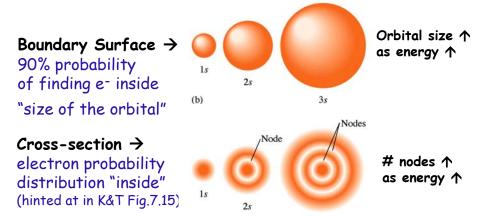
(1)

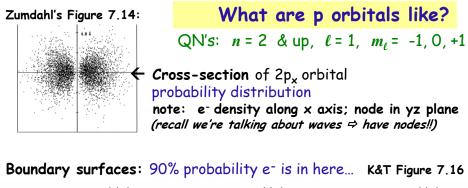

Describing atomic orbitals: quantum #s DIFFERENT ORBITALS HAVE DIFFERENT PROPERTIES Each orbital is a solution to Schrödinger's eqn, describing the e⁻'s energy → each orbital described by 3 "augntum numbers"

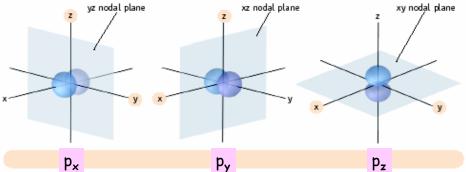
Quantum #	Symbol	Describes	Possible values
Principal QN	n	Energy level ("shell") also n = # subshells/shell	n = 1, 2, 3, ∞
Angular Momentum QN	l	Orbital's shape	$\ell = 0$ to $n-1$
Magnetic QN	m _e	Orbital's orientation	$m_\ell = +\ell \text{ to } -\ell$

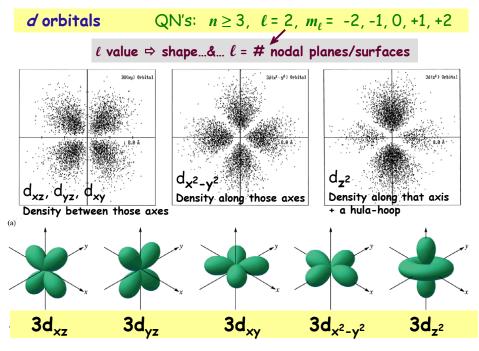
In atoms with > 1 e⁻, two or more e⁻s can have same n value
 If so: in same "electron shell" & have similar (OR =) energy

 Electrons in a given shell: grouped into "subshells" based on shapes of their orbitals (defined by value of l)

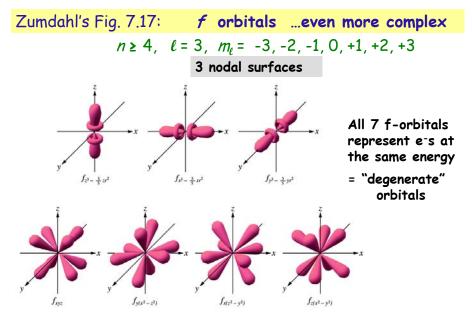

 Electrons in a given subshell: in same orbital (max. 2e⁻/orbital), OR in orbitals of different spatial orientation (defined by value of m_e)




Zun	ndahl	s Quantu	um #s for	H atom's 1 st	4 electron shells
Tab	ole 7.	2 Orbit	al		
n	ℓ	Designa	ation	m_ℓ	Number of Orbitals
1	0	1 <i>s</i>		0	1
2	0	2 <i>s</i>		0	1
	1	2p		-1, 0, +1	3
3	0	3 <i>s</i>		0	1
	1	3p		-1, 0, 1	3
	2	3 <i>d</i>		-2, -1, 0, 1, 2	5
4	0	4 <i>s</i>		0	1
	1	4p		-1, 0, 1	3
T	2	4d		-2, -1, 0, 1, 2	5
	3	4 <i>f</i>	-3,	-2, -1, 0, 1, 2, 3	7
QN	cipal Nilar:	Angular momentum QN	Subshell orbitals of same type & energy = degenerate	Magnetic QNs One # for eau suborbital in s each has uniqu orientation, <i>i.e</i> direction it po	ch Degeneracy = # orbitals with same energy (<i>i.e.</i> , # in subshell)
K&1	T Tab	le 7.1		· · · · · F ·	


GROUND STATE OF H ATOM = 1s orbital n = 1, l = 0We'll now look at higher energy <u>s-orbitals</u> (other n values)... ...then look at other orbital types (other l values)

Zumdahl's Figure 7.13:Hydrogen's 1s, 2s & 3s orbitalsQUANTUM #s:n = 1, 2, 3...ENERGY LEVEL or SHELL $\ell = 0$ SHAPE = SPHERICAL (s-orbitals) $m_{\ell} = 0$ ORIENTATION...no choice...spherical



Zumdahl's Fig. 7.16 (see Kotz Fig. 7.15)

You need to be able to draw the shapes of s, p & d orbitals... but don't worry about f orbitals.

THE STATE OF KNOWLEDGE ABOUT e-s...

What IS known about ELECTRONS:

- Behave as standing waves (described by wavefunction, ψ)
- Exist near nucleus, in specific regions of space (defined by \$\nu^2\$)
 Can describe as being in specific "orbitals"

but NOT Bohr's circular orbits (early idea was incorrect)...

Energy of e⁻ determines which "orbital" it is in

What is NOT known:

- Exactly where an electron is at any moment
- HOW electrons move inside orbitals (...wave-particle duality?!?)

LUCKILY: knowing where it is **LIKELY** to find an e⁻ <u>IS SUFFICIENT</u>!

REMINDER: Why do we care where the electrons are?

- CHEMISTRY IS ALMOST ENTIRELY ABOUT ELECTRONS!
- Reactions: driven by attraction of es to nuclei
- Shapes of molecules: determined by sharing of es between nuclei
- Interactions between molecules: based on locations of electrons...

To understand physical & chemical behaviour of substances, we must "find" the electrons in the atoms.

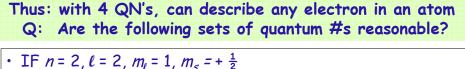
Zumdahl's Figure 7.18: Relative energies of orbitals for the **hydrogen atom**

NOTE: H atom has 1 e⁻ ... in ONE of these orbitals:

Chapter 8: Atomic Electron Configurations & Chemical Periodicity

Treating atoms as +ve nuclei surrounded by e⁻s in H-like orbitals... ...we can start EXPLAINING why things behave the way they do!

- 8.1 Electron spin
- 8.2 Pauli Exclusion Principle
- 8.3 Atomic Subshell Energies & Electron Assignments
- 8.4 Atomic Electron Configurations
- 8.5 Electron Configurations of Ions
- 8.6 Atomic Properties & Periodic Trends
- 8.7 Periodic Trends & Chemical Properties


CHAPTER GOALS:

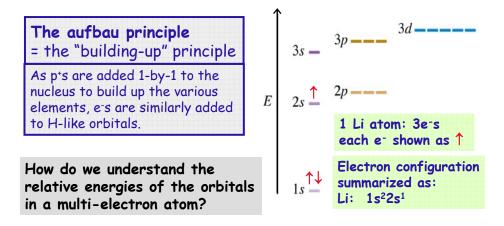
- Understand the role magnetism plays in determining & revealing atomic structure
 - Understand effective nuclear charge and its role in determining atomic properties
- Write the electron configurations for any element or monatomic ion
- Understand the fundamental physical properties of the elements & their periodic trends

8.1 Electrons have a magnetic moment \Rightarrow must spin PHYSICS: Spinning ⇒ **Imagine** e⁻ (ignore its wave character...) charges generate as a particle spinning like a top magnetic fields... S N S clockwise vs. counterclockwise ⇒ 2 "spin states" $\Rightarrow m_s = +\frac{1}{2} or -\frac{1}{2}$ charged particle $(4^{th} \text{ guantum } \#)$ Z's Fig. 7.19 K&T Fig. 8.1, 8.3 PHYSICAL SIGNIFICANCE OF THE 4th QUANTUM NUMBER: Pauli exclusion principle: Any atomic orbital can "contain" 2 e-, as long as the e⁻s' spins are OPPOSITE i.e.: for any given E, math always yields 2 wavefunctions

(12) with same $n, \ell, m_{\ell} \Rightarrow$ same E, shape & orientation \Rightarrow same orbital! but m_s value is different \Rightarrow two unique electrons described considered as spinning opposite ways

(11)

• <u>NOT POSSIBLE</u>: ℓ can only have values from 0 up to (n-1)... ...so... ℓ =2 is not possible for 2nd energy level (n=2) <u>Significance</u>? An e⁻ in the n=2 level cannot be in a *d* orbital... only allowed to be in *s* or *p* orbitals (ℓ =0 & 1)


• IF $n = 2, l = 1, m_l = 1, m_s = +\frac{1}{2} \rightarrow$ this one IS possible: energy level = 2 orbital type = p orientation = p_y (? arbitrary choice - it's one of the 3...) e⁻ spin = "up" \Rightarrow uniquely describes an e⁻ in <u>one</u> of the three 2p orbitals: "2p_x" "2p_y" "2p_z"

(13)

8.2-8.4 Atomic Electron Configurations

Determining where the e-s are in a polyelectronic atom:

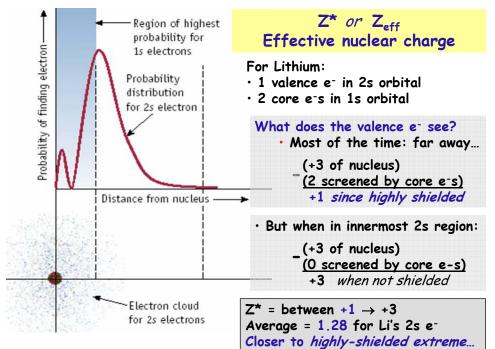
- Add them one-by-one into H-like orbitals (the aufbau principle...)
- Start with lowest E orbital
- maximum 2 e⁻ per orbital
- (Pauli exclusion principle...)
- then move to next, higher E orbital...

A closer look: Imagine YOU are an electron in a Li atom...

3+

3 electrons total

WHAT DOES OUTERMOST ELECTRON "SEE" ?


+ve charge of nucleus (ATTRACTION)

...BUT...

other electrons in the way! (REPULSION)

"screened" *or* "shielded" by the other e⁻s

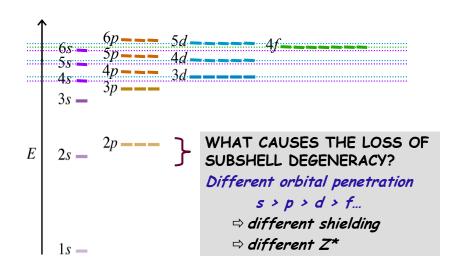
(15)

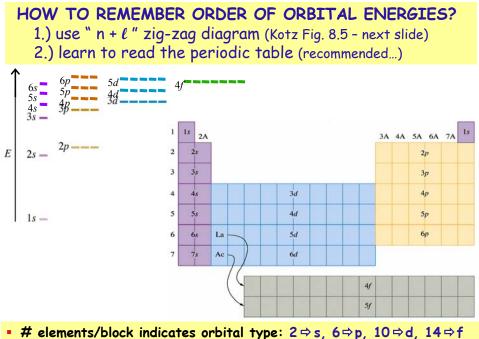
Kotz Fig. 8.6

EFFECTIVE NUCLEAR CHARGE: Z_{eff} or Z*

Atom	Z*(2s)	Z*(2p)	Notice:
Li	1.28		e ⁻ s in <i>s</i> -orbitals always feel
В	2.58	2.42	higher Z* than e ⁻ s in <i>p</i> -orbitals
С	3.22	3.14	→ because s-orbitals penetrate
Ν	3.85	3.83	closer to the nucleus than <i>p</i> s!
0	4.49	4.45	⇒ explains why s orbitals are
F	5.13	5.10	lower E than <i>p</i> s in same E level

Calculating REAL average values of Z* is difficult, but possible. Simple to estimate instead by considering "highly shielded extreme":

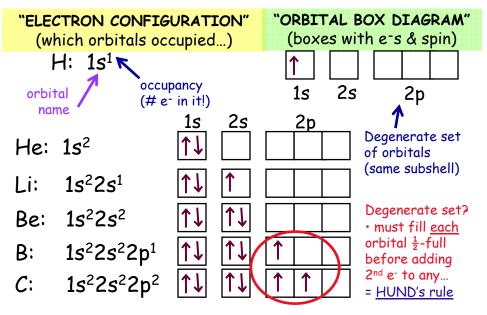

EFFECTIVE NUCLEAR CHARGE (Z_{eff} or Z*)


= average nuclear charge felt by a particular e⁻ (*e.g.*, each valence e⁻) because of shielding by other electrons

Highly shielded extreme: (not an official term) (17) $Z_{eff}^{min} = (nuclear charge) - (# core e^{-s})$

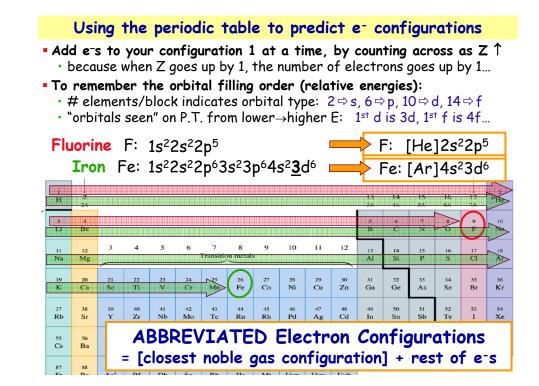
Relative Es of atomic orbitals for multi-e- atoms

- ordering shown here: based on experimental data
- as ↑ in energy, levels get closer & closer together
 ⇒ not all "n=4" orbitals higher in E than "n=3" orbitals...*etc.*



orbitals "seen" on P.T. from lower→higher E: 1st d is 3d, 1st f is 4f...

Fig.8.5: Zig-zag memory aid for relative orbital energies



Hund's rule: the lowest energy electron configuration for an atom has the maximum number of unpaired e^{-s} allowed by the Pauli principle
(21) in a particular set of degenerate orbitals.

		1s	2s		2p		
He:	1s ²	↑↓					FULL: n=1
Li:	1s ² 2s ¹	↑↓	1				
Be:	1s ² 2s ²	ŢŢ	ţ↑				
B:	1s ² 2s ² 2p ¹	ŢŢ	ţ↑	1			Noble
C:	1s²2s²2p²	ŢŢ	ţ↑	1	1		gases: FULL
N:	1s²2s²2p³	ţ↓	ţ↑	1	1	1	VALENCE SHELLS
<i>O</i> :	1s²2s²2p4	ţ↓	ţ↑	↓	, ↑	1	
F:	1s²2s²2p ⁵	$\uparrow\downarrow$	ţ↑	↓	L\↓	1	
Ne:	1s²2s²2p ⁶	↑↓	ţ↑	↑	L ↓↑	¢↓	FULL: n=2

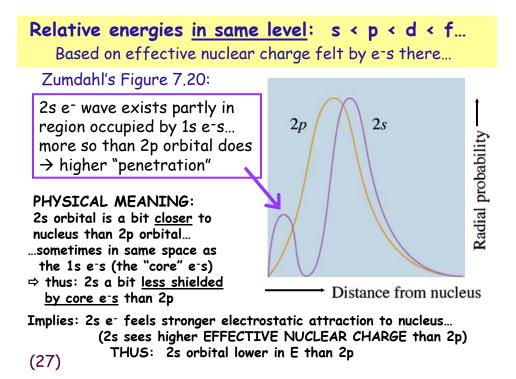
(22)

Valence Elect Lower E electron called <u>core elect</u>	in <u>unfilled</u> is are none • usually e ⁻	 highest energy, outermost electrons in <u>unfilled</u> shells usually e⁻s with highest principle Q.N. but not always (relative orbital Es) 				
<u>Element</u>	<u>Configuration</u>	Valence				
Cl	1s² 2s² 2p ⁶ <mark>3s² 3p⁵</mark>	7 (in n=3)				
	core valen	ce				
Fe	1s²2s²2p63s²3p6 <mark>4s</mark>	<mark>²3d6</mark> 8 (in n=3&4)				
Note: our Hund's rule predictions of e ⁻ configurations do not match some exp'tal conclusions for some transition metals (<i>e.g.</i> , Cr, Cu, Pt) § <i>based on colours absorbed/emitted, degree of interaction with magnets</i> You do <u>not</u> need to memorize these exceptions (seen in text) for Chem 205.						

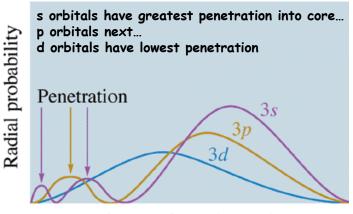
Predicted for Cu:		11 (in n=3&4)
(24) Observed for Cu:	[Ar] <mark>4s¹3d¹</mark> 0	11 (in n=3&4)

ASSIGNED READINGS

BEFORE NEXT CLASS:


read up to & including Ch.8.4

- master: orbital names, shapes & energies, assigning/using quantum numbers
- practice: electron configurations of atoms/ions identifying valence vs. core electrons using orbital-box diagrams


(25)

Extra slides: More detail

...to help understand relative energies of orbitals

PENETRATION explains relative orbital energies: s < p < d ...

Distance from the nucleus

Zumdahl's Figure 7.21b → see Kotz p.342 for similar explanations