CHEM 205 section 03

LECTURE #21 Thurs. March 20, 2008

ASSIGNED READINGS:

TODAY'S CLASS: Ch.9: 9.1-9.6...

NEXT CLASS: continue Ch.9

(1)

Chapter 9: Bonding & Molecular Structure – Fundamental Concepts

- 9.1 Valence Electrons
- 9.2 Chemical Bond Formation
- 9.3 Bonding in Ionic Compounds
- 9.4 Covalent Bonding & Lewis Structures
- 9.5 Resonance
- 9.6 Exceptions to the Octet Rule
- 9.7 Charge Distribution in Covalent Bonds & Molecules
- 9.8 Bond Properties
- 9.9 Molecular Shapes
- 9.10 Molecular Polarity
- 9.11 The DNA Story...

Chapter Goals:

- Understand the difference between ionic & covalent bonds
- Draw Lewis electron dot structures for small molecules and ions
- Use electronegativity to predict the polarity of bonds and molecules
- Understand the properties of covalent bonds & their influence on molecular properties
- Use VSEPR theory to predict the shapes of simple molecules and ions & to understand the structures of more complex molecules

9.1 Valence electrons... and Gilbert Lewis

Valence e⁻s: highest E, farthest from nucleus... → determine chemical properties

Main group elements: s & p e s of outermost shell Transition series elements: in s & partly-filled d shell OR s & partly-filled f shell

G. N. Lewis 1875 - 1946

Representing valence electrons: Lewis dot structures

- use element's symbol to represent NUCLEUS + CORE es
- use dots to represent VALENCE es that element has...
 - place one dot per each side of symbol
 - if more left...begin to pair them up (sort of like 2e per orbital)
 - "full octet" = 4 pairs of e s = noble gas configuration
 - "full duet" = 2 pairs of e-s, for He...and H in compounds...

Tab	le 9.2 • L	ewis Dot Syn	nbols for Main	Group Atom	s		
1A ns ¹	2A ns ²	3A ns ² np ¹	4A ns ² np ²	5A ns ² np ³	6A ns ² np ⁴	7A ns²np ⁵	8A ns²np ⁶
Li	· Be ·	٠ġ٠	٠ċ٠	· N ·	:0	÷F	: Ne :
Na•	· Mg ·	· Ál ·	٠Si٠	٠P٠	:s∙	:ċi∙	: År :

9.2 Chemical bond formation

 Bonds = forces that hold groups of atoms together and make them function as a unit

CONTINUUM:

COVALENT BONDING	IONIC BONDING		
Equal sharing (no charge separation)	No sharing (separate ions)		
:ċi· + .ċi: → :ċi:ċi:	e ⁻ transferred into valence of Cl Li's valence shell emptied (now like He)		
(4) Shared valence, but each is "full"			

How strongly do the ions attract each other in a crystal?

- Electrostatic attraction brings ion together (↑ stability...)
 ⇒ E released as heat: "exothermic" process
- Energy released as heat: called "enthalpy", "H"
 - Note: this is from Ch.6, which we cover in Chem 206 (ignore here!)
 - Summary: $\Delta H < 0$ (negative) means system loses E as heat...

"LATTICE ENERGY" = energy released when separated, gas-phase ions are packed together into a crystal lattice

$M^+(g) + X^-(g) \rightarrow MX(s)$

Lattice Energy = $\frac{k Q_1 Q_2}{r}$	• same form as Coulomb's law • Q_1, Q_2 = charges on the ions • r = shortest distance between		
Magnitude of LE depends on ions ■ Higher charge ⇔ larger LE ■ Larger ions ⇔ smaller LE	 centres of cations & anions k = constant for any compound related to <u>ion packing</u> in 3D & e⁻ <u>configuration of ions</u> 		
(6)			

1 Sublimation of	limation of the solid metal	ENERGY INPUT/OUTPUT ?		
Li($(s) \rightarrow \text{Li}(g)$	[endothermic]		
2. Ionization of t Li	the metal atoms $i(g) ightarrow Li^+(g)$ + e ⁻	[I.E.= endothermic]		
3. Dissociation of $\frac{1}{2}$	the nonmetal into atom $F_2(g) \rightarrow F(g)$	ns [endothermic]		
4. Formation of X- ions in the gas phase:				
F(g) + e ⁻ \rightarrow F ⁻ (g)	[E.A .= exothermic]		
5. Formation of t Li ⁺	he solid MX ⁺(g) + F⁻(g) → LiF(s) [very exothermic]		
NET: Li FC	$(s) + \frac{1}{2} F_2(g) \rightarrow LiF(s)$ DRMATION OF SALT) [exothermic overall] HEAT EVOLVED BY RXN		
Useful: if measure & subtract = way to c	heat evolved by net rea energies associated wit letermine LATTICE EN	ction (" <i>heat of formation")</i> th steps 1-4 <i>(all measurable)</i> ERGY (step 5)		

Formation of an Ionic Solid: broken down into hypothetical steps...

Example: predict relative lattice energy of...

One of the following pictures represents part of a KBr crystal and one represents part of a CaO crystal

Which spheres represent the anions? ...the cations? Which crystal is which? Which crystal would have the larger lattice energy?

To confirm your predictions:				
Ionic radii (pm):	K⁺	133 pm	Br⁻	196 pm
	Ca²⁺	106 pm	O ²⁻	140 pm

(8)

9.4-5 Covalent Bonding and Lewis Structures

- Goal: to learn to draw structures that show how electrons are shared between atoms inside molecules
- Why?
 - Can predict # bonds between atoms
 - · Can predict shapes & polarities of molecules
 - · Can predict properties of substances!
- First: understand covalent bonding...

(9)

9.4-9.5 Covalent Bonding and Lewis Structures

- Goal: to learn to draw structures that show how electrons are shared between atoms inside molecules
- In Lewis electron dot structures (or just "Lewis structures"):
 - shared e⁻ pairs = "bonding pairs" → shown as lines
 - unshared e⁻ pairs = "lone pairs" → shown as two dots (nonbonding e⁻s)
 - atoms form as many bonds as necessary to fill up their valence shell (*i.e.*, to achieve full octet...duet for H...)
 - "octet rule": molecules & polyatomic ions <u>tend</u> to have structures in which each atom has 8 valence e^{-s} (but it is only a "rule" for C, N, O, F)

(11)

Drawing Lewis Structures <u>requires</u> a plan

NOTE: Lewis structures do not require identifying which atomic orbitals are involved...

• when atoms react: orbitals overlap (waves interfere)...Es/shapes change

• we will come back to orbitals at the end of Ch.9

Simplest plan of attack (to start with...add more soon...)

- 1. Decide on the central atom (never H)
- 2. Count total # valence e-s (total from all atoms involved)
- 3. Make single covalent bonds (indicate bond using a line) to connect atoms to the central atom
- To use remaining e⁻s:
 add lone pairs (: 's) to achieve full octets (duet for H)
- If central atom has <8 e⁻s now: move a lone pair to become a bonding pair instead (*i.e.*, form multiple bonds)

```
Try: PCl<sub>3</sub> CO<sub>2</sub> HCN (12)
```

Lewis structures-final steps: <u>Exactly</u> where is the charge?

6. Assign formal charges to atoms in molecule: (section 9.7)

FORMAL CHARGE: how bonded atom looks relative to a free atom

- = (nuclear charge # core e⁻) (# valence e⁻s atom "owns")
- = (# valence e⁻s on free atom) (# nonbonding e⁻s + $\frac{1}{2}$ # bonding e⁻s)
- = (# valence e⁻s on free atom) (# nonbonding e⁻s + # bonds)

When more than one Lewis structure can be drawn: STRUCTURES IN WHICH FORMAL CHARGES ARE <u>MINIMIZED</u> ARE MORE LIKELY TO REPRESENT REALITY: more stable → preferred

Lewis structures: there is one final step, but for now...Practise drawing Lewis structures, following the plan......including assigning formal charges where neededTetrafluoroborateOzone:anion: BF4-O3

Note: sometimes there is more than one correct way to draw the same structure -- details soon ("resonance") ⇒ come back later to COMPLETE your O₃ & CO₃²⁻ structures Lewis structures-final steps: Is there >1 option?

7. If more than one <u>equivalent</u> structure can be drawn for the same molecule: draw them all...

...the molecule's real structure is an <u>average</u> of them.

"resonance structures " (section 9.5)

The real structure:

symmetric a <u>resonance hybrid</u>

= average of the most stable
 resonance structures
 (resonance contributors)

 3 equivalent NO bonds & 3 identical O's
 → 3 NO bonds are same length, with strength between a single & double bond

→ each O atom carries a charge of $-\frac{2}{3}$ because each has $\frac{2}{3}$ of an extra lone pair (not shown)

(16)

9.6 Exceptions to the Octet "Rule"

2nd row elements C, N, O, F <u>always follow the octet rule</u>
 valence e⁻s can only access 2s & 2p orbitals... 3s too high in E...

2) 2nd row elements B and Be often have < 8 e⁻s

- B only has 3 valence es to share: "trivalent"
- not strong enough pull on e⁻s to make highly electronegative partners share lone pairs to fill valence via multiple bonds...
 - ⇒ "open valence" very reactive towards species with lone pairs

Exceptions to the Octet Rule continued...

- 3) 3rd row and heavier elements CAN violate octet rule WHY?
 - Valence e⁻s in higher E orbitals ⇒ E required to access the even-higher E orbitals is LESS than for light elements...
 - Thus: if necessary, can put e⁻s into, say, the 3d orbitals...
 e.g.: P, S, Cl... commonly have >8 valence e⁻s in molecules
- <u>THUS</u>: When writing Lewis structures, satisfy octets first, then place "extra" electrons around heavy elements

Table 9.7 •	Lewis Structures i	n Which the Cent	ral Atom Exceeds	an Octet
Group 4A	Group 5A	Group 6A	Group 7A	Group 8
$\mathrm{SiF_5}^-$	PF5	SF ₄	CLF ₃	XeF ₂
:F: :F-Si	;;;P<;;;	:-S	:	:F: -Xe
[:F:	:F:	: <u>F</u> :	: <u>F</u> :

Exceptions to the Octet Rule continued...

4) Molecules with odd numbers of electrons

- Rare cases when C,N,O,F simply CAN'T obey octet rule... since not enough e⁻s available
- Result: molecule ends up containing <u>an unpaired e</u>-"free radical" <u>yes - paramagnetic!</u>

e.g.,
$$NO_2$$

Total # valence electrons: $5 + 2(6) = 17 e^{-1}$
Adds up to 18 e⁻¹
Must remove one from
our structure...
N ends up one e⁻ short

i.e., valence not full: "open shell" (reactive!) Why not the oxygen instead? → Because O has stronger pull on e-s than N...

(19)

Finally: the most realistic possible Lewis structure HAS...

- 1. All atoms with full valence shell, if possible (except Be,B,AI...).
- 2. Minimum charge separation (reduce F.C.'s using multiple bonds...).
- 3. Formal charges agreeing with atoms' electronegativity (if possible).

Draw the best possible Lewis structures... & then identify if all atoms obey octet rule. (remember: C,N,O,F <u>CANNOT</u> exceed)

SO₂

 CIO_4^-

Isoelectronic and Isostructural species

- Molecules/ions with same number of valence electrons in same bonding/nonbonding arrangement
 - *i.e.,* same Lewis structure but some atoms & formal charges will differ...

$$\begin{array}{cccc} : N \equiv \stackrel{\bigcirc}{O} : & : N \equiv N : & : \stackrel{\bigcirc}{C} \equiv \stackrel{\bigcirc}{O} : & : \stackrel{\bigcirc}{C} \equiv N : \\ NO^+ & N_2 & CO & CN^- \end{array}$$

ASSIGNED READINGS

BEFORE NEXT CLASS:

read up to 9.6...

Note: sometimes there is more than one correct way to draw the same structure -- "resonance" structures \Rightarrow include equivalent resonance structures for $O_3 \& CO_3^{2-}$