CHEM 205 section 03						
LECTURE #24	Tues. April 01, 2008					
ASSIGNED READINGS:						

TODAY'S CLASS: finish Ch.9

NEXT CLASS: Ch.10.1 & 10.2

(1)

9.9 Molecular Shapes: the VSEPR model

- SHAPE is very useful information:
 - Start with Lewis structure: predict 3-D shape of molecule
 - Analyze bond dipoles: predict interactions <u>between</u> molecules
 predict substance's physical & chemical properties!

A model for molecular geometries: <u>VSEPR</u> the <u>Valence Shell Electron Pair Repulsion model</u>

- Ron Gillespie (McMaster University...)
- The structure around a given atom is determined principally by minimizing repulsions between electron pairs in the valence shell
 - *i.e.,* molecules adopt geometries with **bonds & lone pairs are as far apart as possible**
- (2) In Ch.10: See how this actually <u>does</u> use our atomic orbitals...

(3)

When central atom's e⁻ pairs are ALL IN BONDS... (Fig.9.8) ...molecular geometry is SAME as e⁻-pair (basic) geometry

See Figure 9.7

(4) Draw these examples (Lewis structures) yourselves to verify this...

Another example: predict geometries & identify bond angles...

VSEPR strategy for determining molecular geometry

9.8 Charge distribution in covalent bonds & molecules

Formal charges: how charge is "explained" when FULL charges are present (*e.g.,* in polyatomic ions)

BUT: What happens when bonded atoms unequally share e⁻s?

Linus Pauling (1930's): "electronegativity" (χ)

Linus Pauling (1901-1994) Nobel prize in Chemistry & Nobel Peace prize

- = the ability of an atom <u>in a molecule</u> to attract <u>shared electrons</u> to itself
 - highest for nonmetals
 - lowest for metals
- Numerical values of Pauling's electronegativities often found on periodic table...
- Calculated from experimental bond energy data: difference between expected (if nonpolar covalent) and observed...

EXPLAINED USING Z*: atom's pull on valence e⁻s... huclear charge felt by valence e⁻s + valence-nucleus distance

(13)

Electronegativity (χ): \uparrow across a period \downarrow down a group																	
Metals: Not good at H Nonmetals: Pull str									rong	jly.							
Li	Li Be						B	C	N	0	F						
1.0	1.0 1.5 holding e ⁻ s 2.1						2.0	2.5	3.0	3.5	4.0						
Na 0.9	Mg 1.2										Al 1.5	Si 1.8	Р 2.1	S 2.5	Cl 3.0		
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	
Cs	Ba	La	Hf	Ta	W	Re	0s	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	
0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	

Useful: \uparrow Electronegativity difference $(\Delta \chi) \Rightarrow \uparrow$ bond polarity Nonmetals: F > O > N, Cl > Br > I, S, C > H, P

> Rank according to polarity of bonds: H_2O , HF, H_3N , HI 1st: use logic (trends)... 2nd: calculate $\Delta \chi$

Fig.9.14

Table 9.10 • Dipole Moments of Selected Molecul				Determined by EXP'T!			
Molecule (AB)	Moment (μ , D)	Geometry	Molecule (AB ₂) Moment (μ , D)	Geometry		
HF	1.78	linear	H ₂ 0	1.85	bent		
HCL	1.07	linear	H _z S	0.95	bent		
HBr	0.79	linear	SO ₂	1.62	bent		
HI	0.38	linear	CO2	0	linear		
H ₂	0	linear					
Molecule (AB ₃)	Moment (μ , D)	Geometry	Molecule (AB ₄) Moment (μ , D)	Geometry		
NH ₃	1.47	trigonal-pyramidal	CH4	0	tetrahedral		
NF ₃	0.23	trigonal-pyramidal	CH3CI	1.92	tetrahedral		
BF ₂	0	trigonal-planar	CH ₂ Cl ₂	1.60	tetrahedral		
			CHCl ₃	1.04	tetrahedral		
Draw/anal	yze these yo	urselves	CCL ₄	0	tetrahedral		

Dipole moments (μ) measured in "Debyes" (D; 1 D = 3.34×10⁻³⁰ C·m) Based on strength of interaction with an applied electric field

Magnitude of dipole moment determined by:

1. polarity of bonds (electronegativity difference between atoms)

2. molecule's geometry (how much of each bond dipole is canceled by others)

(17)

STRATEGY FOR DETERMINING GEOMETRY & POLARITY

FYI - Lone pairs influence geometry, not net dipole

Formal charges take bonding and lone pairs into account

- Is there an extra or missing e- on atom in current bonding environment compared to a "free atom" ?
- Calculated by treating all bonds as nonpolar (which isn't true...).
- · Book-keeping, but not necessarily realistic...

Bond dipoles take only <u>shared</u> (bonding) pairs into account

- Is there a build up of partial charge because e⁻s are shared unevenly between atoms with different electronegativity?
- Realistic view of how bonding e s are distributed between atoms
- Regardless of presence of lone pairs on either atom

NOTE: Sometimes formal charges and bond polarities are opposite to each other
e.g., CO ⇒ bond really is polarized with bonding e^{-s} closer to O...but not overall -ve on oxygen...

(20)

Determine the polarity of: acetone (nail-polish remover)

What are the bond angles?

How might it interact with water?

ASSIGNED READINGS

BEFORE NEXT CLASS:

read rest of Ch.9

PRACTICE: Lewis structures \rightarrow geometries \rightarrow polarities

What is the molecular shape of XeF₄? Zumdahl's Figure 8.19

To draw Lewis structure: 8e⁻ (Xe) + 28e⁻ (4F) = 36e⁻

On your own: determine geometry around central atom...

Species	BF₄⁻	<i>O</i> ₃	CO32-
Representative structure (not including resonance)	:F: ОІ :F.—в.—F: 	;•=;; ⊕`,;; Θ	:•= c .•:⊙
# e ⁻ pairs on central atom			
Electron-pair geometry			
# lone pairs			
Molecular geometry			
Hybridization of central atom			
(24)	See Ch.10.2	<u>.</u>	