CHEM 205 section 03

LECTURE #25 Thurs. Apr.03, 2008

ASSIGNED READINGS:

TODAY'S CLASS: Ch.10 sections 10.1 & 10.2

FINAL CLASS: Ch.12 (concise version)

WHERE DO ATOMIC ORBITALS FIT INTO BONDING?

Chapter 10: Bonding & Molecular Structure – Orbital Hybridization...

- 10.1 Orbitals and Bonding Theories
- 10.2 Valence Bond Theory
 - Orbital overlap model of bonding
 - · Hybridization of atomic orbitals
 - Multiple bonds: σ -bonds vs. π -bonds
 - Cis-trans isomerism: a consequence of π -bonding
 - Benzene: a special case of π -bonding

Chapter Goals: (for us)

(2)

- Identify the hybridization of an atom in a molecule or ion.
- Draw sketches representing the orbitals involved in forming single & multiple bonds

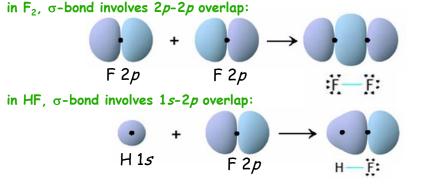
10.1: Orbitals and Bonding Theories

YES! The atomic orbitals we learned ARE important!

- Atomic orbitals (wave descriptions of e⁻s showing where we'll find them) of the VALENCE ELECTRONS (e⁻s involved in bonding) overlap & mix together when atoms form bonds.
- Result: new orbitals formed (interfering waves = new pattern!)

TWO THEORIES USED TO RATIONALIZE HOW THIS OCCURS:

- 1. Valence Bond (VB) Theory (aka Localized Electron Model)
 - Key player: Linus Pauling
 - Related to Lewis structure idea
 Bonding e⁻ pairs localized between pairs of atoms
 - Lone pair e-s on single atoms
 - Mainly used for:
 - Visual pictures of molecular structure & bonding
 - Molecules in ground state


(3) *V Our focus in Chem 205.*

- 2. Molecular Orbital (MO) Theory (aka Delocalized Electron Model)
 - Robert S. Mulliken
 - Bonding e⁻s spread out over entire molecule, in MOLECULAR ORBITALS
 - Particularly useful for:
 - Quantitative views
 - Excited states
 - Paramagnetic cmpds with even # e⁻s! (O₂)

See in more advanced courses.

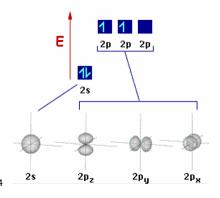
10.2: VB Theory Part (a): Orbital overlap model of bonding
IN GENERAL: two overlapping orbitals + 2e⁻ = one bond
single bond: greatest e⁻ density along axis of bond called a σ-bond "sigma bond"

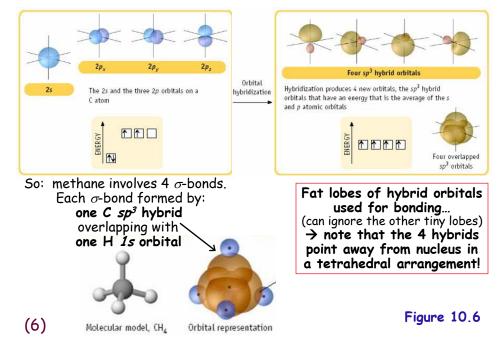
For simple linear molecules involving only one single bond, atomic orbitals <u>in original form</u> overlap to form bonds:

RESULT: molecular geometry same as predicted by VSEPR
(4) WHAT ABOUT MORE COMPLICATED MOLECULES?

Let's consider methane, CH₄

Predicted geometry (using VSEPR) = TETRAHEDRAL ...matches experimental observations


If we try to rationalize this starting with C's valence e⁻s in its original atomic orbitals, it won't work:


Problems:

- ORBITAL ORIENTATIONS:
 2s: "points" everywhere...
 3x 2p's: at 90° to each other
- 2.) ORBITAL OCCUPATION: ground-state C atom only has
 2 unpaired e⁻s...so how can it bond to 4 H's (each supply 1e⁻)?

...even if we imagine exciting one of the 2s e⁻s into a 2p orbital, the orbital orientations are still "wrong" for Td CH₄

(5)

The solution: HYBRIDIZATION OF ATOMIC ORBITALS

Hybridization of atomic orbitals

WHAT IS HAPPENING:

- Atoms respond as needed to make the newly forming molecules have lowest energy possible.
- As bonds begin to form: atom's valence shell's orbitals mix together to form new "hybrid" orbitals that permit the e⁻ pairs to be as far away as possible

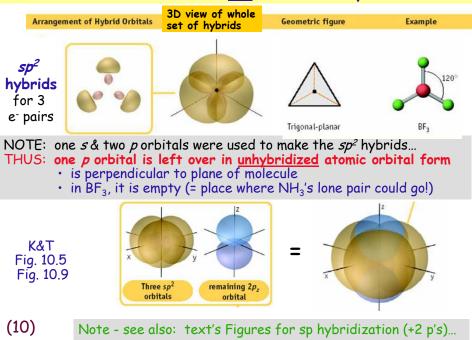
NOTE: any orbitals from an atom's valence SHELL can be used • e.g., if valence e in n=2 shell, all 2s & all 2p's can be used • even if they were not all <u>occupied</u> in the free atom • the valence e's are then "placed" into the hybrid orbitals...

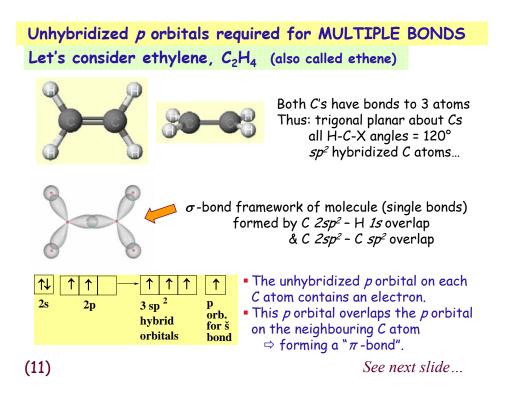
Identifying hybrid orbitals involved in bonding

Guidelines: 1st draw Lewis structure & use VSEPR to predict geometry...

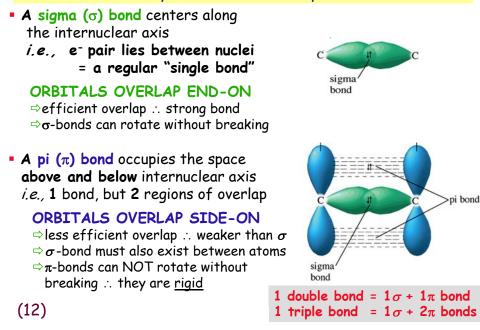
- 1. One hybrid orbital required per e pair, treating mult.bonds as single
- 2. If mix 2 atomic orbitals ⇒ 2 hybrid orbitals form... etc...
- 3. Hybrid orbitals are named after their parent atomic orbitals
 - All hybrid orbitals use the s orbital, plus as many p and d orbitals as needed to make enough hybrids to hold all the σ-bonding pairs & lone pairs around the central atom

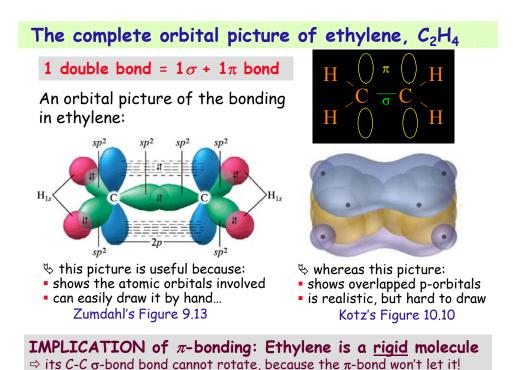
(7)

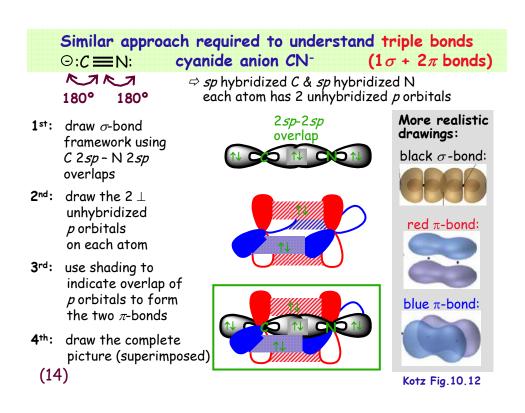

# pairs	Basic (e⁻) geometry	Angles	Atomic orbitals required	Hybrid orbit	als formed	
2	Linear	180°	1 s & 1 p	2 sp hybrids		
3	Trig. planar	120°	1 s & 2 p 's	3 sp ² hybrids	120°	
4	Tetrahedral	109.5°	1 s & 3 þ s	4 sp ³ hybrids	109.5"	
5	Trig. Bipyr.	120°, 90°	° 1 <i>s</i> , 3 <i>p</i> /s & 1 <i>d</i>	, 5 sp³d hybrids	120°	
6	Octahedral	all 90°	1 <i>s</i> , 3 p 's & 2 a	rs 6 sp³d ² hybrids	905	
Compare this figure (Zumdahl) to Kotz Figure 10.5 These are easier to draw, but Kotz's shapes are more realistic						

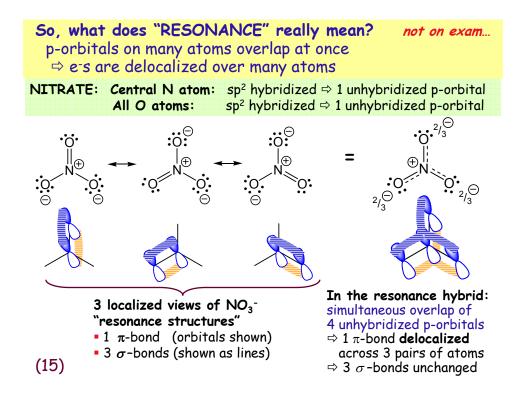

Species	BF₄⁻	<i>O</i> ₃	CO32-	
Representative structure (not including resonance)	:F: ОІ :F-в-F: 	; • • • • • • • • • • • • • • • •	$: \circ = c : \Theta $	
# e [_] "pairs" on central atom	4	3	3	
Electron-pair geometry	Tetrahedral	Trigonal planar	Trigonal planar	
# lone pairs	0	1	0	
Molecular geometry	Tetrahedral	Bent (V-shaped)	Trigonal planar	
Hybridization of central atom				

Which hybrid orbitals were involved in bonding?


(9) Terminal atoms: can view as hybridized too (but is controversial...)







SIGMA (σ) *vs.* **PI** (π) **BONDS** the way the orbitals overlap is different...

On your own: determine orbitals involved in bonding in					
	Ozone: O ₃				
Resonance structures (note: looking at either ONE of them lets you answer questions below)	;₀=;; ;₀=;;	$\begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & & $			
Hybridization of:	Central O:	Terminal Os:			
Total number of:	σ -bonds:	π-bonds:			
Orbitals involved in σ -bond framework (draw & label)					
Orbitals involved in π-bonds (draw & label)					

FINAL EXAM INFORMATION

- Final exam: Mon. April 14th (2–5pm)
- Covers entire course: Ch.1-5, 20.1, 7-9, 10.1-2, 12
- The examination room invigilators are VERY STRICT:
 - Student ID card mandatory
 - No programmable calculators
 - No electronic dictionaries, cell phones, pagers, blackberries, etc
 - Book-format translation dictionaries (word-to-word only) allowed, but they will be inspected.
 - Arrive to the exam room early !

FINAL EXAMS FROM PREVIOUS YEARS ON WEBSITE:

Moodle site has link to: http://faculty.concordia.ca/rogers

(17)