CHEM 206 section 01	
LECTURE #10	Wed. Feb.06, 2008
LECTURE TOPICS:	
TODAY'S CLASS:	finish Ch.14.4 start Ch.15
NEXT CLASS:	continue Ch.15

(1)

14.4 Colligative properties: Osmotic Pressure

Q: Ever forgotten grapes in water while washing them?? (EVENTUALLY, THEY BURST...)

(2)

Use osmometry to identify this unknown: A 25.00 mL solution containing 4.562 mg of an unidentified ionic compound with formula MCl₃ exhibits an osmotic pressure of 83.1 ± 0.6 mm Hg at 22°C. What is the likely identity of "M"? 1st: assumption required: ions fully dissociated in solution (i = 4) ① Use osmotic P to find n_{solute} = total # moles of dissolved ions! $\Rightarrow n_{ions} = \Pi V/RT = \frac{(83.1 \text{ mm Hg})}{(760 \text{ mm Hg} \cdot \text{atm}^{-1})} \times \frac{(0.02500 \text{ L})}{(0.08206 \text{ Latm} \cdot \text{mol}^{-1}\text{K}^{-1})(295\text{K})}$ = 1.129×10^{-4} mol of ions (1 extra SF) ② Find MM: must remember where the ions came from... 4 ions per MCl₃ unit \Rightarrow n_{MCl3} = n_{ions}/4 = 2.823×10⁻⁵ mol MCl₃ MM_{MCI3} = (0.004562 g) / (2.823×10⁻⁵ mol) $MM_{MCI3} = MM_{M} + 3MM_{CI} \Rightarrow MM_{M} = MM_{MCI3} - 3MM_{CI}$ = 161.6 - (3x35.45) = 55.3 g/mol (3 SF...) % error in Π = 100x(0.6/83.1) = 0.72% If % error in MM_M is same: 55.3 ± (0.0072x55.3) = 55.3 ± 0.4 g/mol

Close to Mn (54.94 g/mol) & Fe (55.85 g/mol); cannot conclude which...

REVERSE OSMOSIS: *like molecular-level filtration*

If the external pressure is larger than the osmotic pressure, reverse osmosis occurs ⇒ solvent flows OUT of the solution.

(8)

Summary: Colligative Properties of Solutions

	Pure solvent	Solution (= solvent + solute)	
Vapour pressure	P° (characteristic)	$P_{soln} = \chi_{solvent} P_{solvent}$ <i>Volatile fraction?</i> <i>additive if > 1 volatile</i>	
Boiling point	b.p. (characteristic) K _b (characteristic)	$\Delta T_{bp} = K_b m_{solute}$ <i>Total solute molality? include van't Hoff factor i</i>	
Freezing point	m.p. (characteristic) K _f (characteristic)	$\Delta T_{fp} = K_f m_{solute} $ Total solute molality? include van't Hoff factor i	
Osmotic pressure	does not exert osmotic pressure	$\pi = \left(\frac{n_{\text{solute}}}{V_{\text{solute}}}\right) RT Total \text{ solute } \underline{molarity}?$ include van't Hoff factor i	

(9)

Chapter 15: CHEMICAL KINETICS

= the area of chemistry concerned with rxn rates

- Rxn may be spontaneous...but will it occur in our lifetime?
 Diamond → graphite...
- Exothermic rxns: will heat be generated faster than we can dissipate it?
- How long until this radioactive sample will be safe?
- Will a reaction take 5 min, an hour, or a week?

Chapter Outline

- 15.1 Rates of chemical reactions
- 15.2 Reaction conditions & rate
- 15.3 Effect of concentration on reaction rate
- 15.4 Concentration-time relationships: Integrated rate laws
- 15.5 Particulate view of rxn rates
- 15.6 Reaction mechanisms

Chapter Goals

- Understand rates of rxns & conditions affecting rates
- Derive rate equation (rate law), rate constant & reaction order from experimental data
- Use integrated rate laws
- Understand collision theory & role of activation energy
- Relate rxn mechanisms & rate laws

(10)

Summary of chem206 attack plan for KINETICS

(12)

15.1 Reaction Rates: how fast do []'s change?

RATE = Change in concentration of a reactant or product per unit time

COMMON SENSE:

as rxn proceeds, [reactants] \downarrow and [products] \uparrow

RATE = - $\Delta[reactant]$ Δt	Reactants disappearing so ∆[reactant] is NEGATIVE Add "-" sign ⇒ <u>RATE</u> is positive
RATE = + Δ [PRODUCTS] Δt	Products appearing so∆[product] is POSITIVE ⇒ <u>RATE</u> is positive

Must specify exactly which species you are talking about...

(14)

Summarizing rate expressions

For a given reaction, to equate rxn rates according to different reactant/product species analyzed: "normalize"

Divide $\Delta [species]$ Δt by the stoichiometric coefficient for that species in the balanced rxn eqn Example: for rxn $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ Rxn rate = $-\frac{1}{2} \Delta [N_2O_5] = +\frac{1}{4} \Delta [NO_2] = +\Delta [O_2]$ Note: specify that you have presented a "normalized" reaction rate *Why?* • not a fixed convention

• many people just specify which substance used to determine rate

(15)

Consider some reactions involved in ozone destruction... Ozone depletion summarized: http://nobelprize.org/chemistry/laureates/1995/press.html Chlorine monoxide plays a major role in the creation of the ozone holes in the stratosphere over Earth's polar regions. CIO itself forms in the stratosphere when ozone reacts with Cl_2 (largely formed via UV light-induced decomposition of refrigerants/propellants like freons = chlorofluorocarbons = CFCs). CIO can decompose on its own: $2ClO(g) \rightarrow Cl_2(g) + O_2(g)$consumes more ozone... If $\underline{A[ClO]} = -2.95 \times 10^6 \text{ Ms}^{-1}$, what are the changes in $[Cl_2] \& [O_2]$? Δt CIO itself also reacts with ozone: $ClO(g) + O_3(g) \rightarrow O_2(g) + ClO_2(g)$ If $\underline{A[ClO]} = -9.03 \times 10^3 \text{ Ms}^{-1}$, what is the rate of disappearance of O_3 ? Δt NOTE: these are instantaneous rates...& usually NOT constant over time!

NOTE: these are <u>instantaneous rates</u>...& usually NOT constant over time! THUS: To predict how long it takes for "all the ozone to disappear", we must learn more about reaction kinetics!

(16)

Reaction conditions = factors that affect rate:

1)	Concentration of reactants	(15.3)
2)	Temperature	(15.5)
3)	Presence of catalysts	(15.5)

(17)

Factors that affect rxn rates (15.2) 1.) concentration of reactants related to need - concentration (solutions) for reactants to - surface area (solids) collide! - pressure (gases) ...a <u>spray</u> of powder A <u>pile</u> of them burns RAPIDLY doesn't burn well... (surface area $\uparrow\uparrow$) K&T Fig. 15.6: How guickly will some flammable spores burn? DEPENDS ON SURFACE AREA

(18)

If a rxn uses a catalyst:catalyst written above the reaction arrow(19)& [catalyst] might appear in rate law too

⁽a) 1 NO: 16 0₃ - 2 hits/second

THUS: can <u>begin</u> to read into information yielded by rate law 1st order wrt reactant "A" <u>suggests</u> collision involving 1 molecule of A 2nd order wrt reactant "A" suggests collision involving 2 molecules of A

> → only will give us a feeling about the rxn's slowest step... we'll see more about this soon...

(20)

K&T Fig.15.11

⁽b) 2 NO: 16 0₃ – 4 hits/second

⁽c) 1 NO: 32 03 - 4 hits/second

ASSIGNED READINGS:

BEFORE NEXT CLASS:

Read: Ch.15 up to section 15.2

+ WORK ON Problems from Ch.14-15

Next class: Ch. 15...