

- Kinetics exp'ts aim to find out: HOW rxn WORKS
- A chemical equation = summary of overall (NET) process
 → only sometimes matches actual steps involved...

A Rxn's Mechanism = the series of elementary steps leading from reactants to products "Elementary steps" = <u>one-step</u> molecular events

...*e.g.,* all species collide simultaneously & react

Molecularity = # of molecules involved in elementary step

1 step (mechanism known) ⇒ rate law matches stoichiometry:

Elementary step		Molecularity	Rate law
Α	ightarrow products	uni molecular	Rate = k [A]
A + B	\rightarrow products	bi molecular	Rate = k [A][B]
2A	\rightarrow products	bi molecular	Rate = k [A] ²
2A + I	$3 \rightarrow \text{products}$	ter molecular	Rate = k [A] ² [B]

(3)

(4)

Mechanistically complex rxns: MANY STEPS A known multi-step rxn: $2 O_3(g) \rightarrow 3 O_2(g)$ "decomposition" of ozone (but not unimolecular...)

EXPERIMENTALLY DETERMINED MECHANISM:

step 1: $O_3 \rightarrow O_2 + O$ step 2: $O + O_3 \rightarrow 2O_2$ NET RXN: $2O_3 \rightarrow 3O_2$

Can write the rate law for each elementary step...but...

The net process cannot be faster than its <u>SLOWEST STEP</u>

= RATE-LIMITING OR RATE-DETERMINING STEP

NOTE: in Chem 206, normally you will be told which step is slower *OR* you'll be given the experimentally observed rate law & then asked to deduce which step is slower

Rate-limiting step determines overall rate law...

• If a later step is SLOWEST:

- \rightarrow more complicated analysis required
- \rightarrow to predict overall rate law:
 - write rate law of RLS
 - will find that [intermediate]'s are involved
 - must figure out how to express these in terms of original reactant species only
- ...because: 1.) we do not control [intermediates]
 - 2.) [intermediates] usually <u>unmeasurably</u> small

IN GENERAL:

- Steps after RLS are "fast" (relatively!)
 - \therefore DO NOT affect overall rate \Rightarrow not included in analysis...
- Steps before RLS must be considered since they'll allow us to express [intermediate]'s in terms of reactant species

...Step before RLS is a "fast pre-equilibrium" Intermediates form & unform at same rate ⇒ [int.] ≈ constant To deal with fast pre-eqm: k_1 [NH₃][OCl⁻] = k_1 [NH₂Cl][OH⁻] 1) Set form/unform rates equal $\Rightarrow [\mathsf{NH}_2\mathsf{CI}] = \underline{k}_1 [\mathsf{NH}_3][\mathsf{OCI}^-] \\ k_2 [\mathsf{OH}^-]$ 2) Solve for [int.] 3) Sub into RLS's rate law \Rightarrow Rate(2) = $\underline{k}_2 \underline{k}_1 [NH_3][OCI^-][NH_3]$ 4) Simplify *k*_1 [OH-] 5) Note effective rate constant Rate = k_{eff} [NH₃]²[OCl⁻] ⇒ predicted rate law for rxn [OH-] If derived from a proposed mechanism: · compare to exp'tally observed rate law Implication: If matches this proposed rate law: rxn inhibited if • mechanism "consistent" with experiment solution is basic

Evaluating a proposed reaction mechanism CRITERIA: 1.) sum of steps = correct stoichiometry 2.) R.L.S. gives observed exp'tal rate law A redox example: $H_2O_2 + 2H^+ + 2I^- \rightarrow I_2 + 2H_2O_2$ **Proposed mechanism:** Step 1: $H_2O_2 + I^- \rightarrow H_2O + OI^-$ SLOW $H^+ + OI^- \rightarrow HOI$ FAST Step 2: Step 3: HOI + H^+ + $I^- \rightarrow I_2$ + H_2O FAST 1.) mechanism's overall rxn? 2.) any intermediates? 3.) molecularity of each step? 4.) mechanism's RLS? 5.) mechanism's rate law?

- 6.) If the rxn is observed to be 1^{st} order in H^{+} ,
- (9) is this proposed mechanism reasonable?

Using kinetics data: evaluating proposed reaction mechanisms

PROPOSING RXN MECHANISMS: (later in your career)

- After determining exptal rate law...
- Use "chemical intuition" to guess at reasonable steps
- Estimate rates of proposed steps (which is RLS?)

EVALUATING RXN MECHANISMS: can do it already!

- A possible proposed mechanism **must** have:
 - 1.) sum of steps = correct stoichiometric eqn for rxn
 - 2.) R.L.S. that would give observed exp'tal rate law
- If criteria met: mechanism "consistent" with expt

"PROVING" A MECHANISM: (via lots of experiments!)

- \rightarrow requires careful expts designed to DISPROVE it!
- \rightarrow can never *really* prove a mechanism...
- (10)

Extra Ex.2: Complex scenario: K&T Ch.15 #27-63-82 hybrid

Consider the rxn: $CO(g) + NO_2(g) \rightarrow CO_2(g) + NO(g)$ Use the kinetics data to evaluate the proposed mechanisms.

Mechanism #1:

Single step: $NO_2 + CO \rightarrow CO_2 + NO$

Mechanism #2:

Mechanism #3:

Step 1: $NO_2 + NO_2 \rightarrow NO_3 + NO$ Step 2: $NO_3 + CO \rightarrow NO_2 + CO_2$ NET: $NO_2 + CO \rightarrow CO_2 + NO$

Step 1: $NO_2 \rightarrow NO + O$ Step 2: $CO + O \rightarrow CO_2$ NET: $NO_2 + CO \rightarrow CO_2 + NO$

At a certain temperature > 500K:

RUN	INITIAL CONC.	REACTANT (mol·L ⁻¹)	INITIAL RATE	ANALYSIS: At this T
	[CO]	[NO ₂] ₀	mol·L ⁻¹ h ⁻¹	$[NO_2] \div 2 \Rightarrow rate \div 2$ $M \Rightarrow 1^{st} order wrt NO_2$
1	5.0x10 ⁻⁴	0.36x10 ⁻⁴	3.4×10 ⁻⁸	(0) (0) (0) (0) (0) (0)
2	5.0x10 ⁻⁴	0.18×10 ⁻⁴	1.7x10 ⁻⁸	$\Rightarrow 1^{st} \text{ order } wrt CO$
3	1.0x10-3	0.36x10-4	6.8×10 ⁻⁸ ·	\Rightarrow rate = k_{obs} [NO ₂][CO]

 $CO + NO_2 \rightarrow CO_2 + NO$ At T>500 K: rate = k_{abs} [NO₂][CO] Mechanism #1: Mechanism #3: Step 1: $NO_2 \rightarrow NO + O$ 1 step: $NO_2 + CO \rightarrow CO_2 + NO$ Step 2: $CO + O \rightarrow CO_2$ Predict: rate = $k [NO_2][CO] | \sqrt{}$ Predict: Mechanism #2: If step 1 "slow": Step 1: $NO_2 + NO_2 \rightarrow NO_3 + NO$ Step 2: $NO_3 + CO \rightarrow NO_2 + CO_2$ rate = k_1 [NO₂] |X| If step 2 "slow": **Predict**: Note: at RT, rate = k_2 [CO][O] If step 1 "slow": exp'tally observed assume $rate_1 = rate_{-1}$ rate = $k_1 [NO_2]^2$ X rate = $k_{obs}[NO_2]^2$ k_1 [NO₂] = k_1 [NO][O] • If step 2 "slow": consistent with $[O] = \underline{k_1 [NO_2]}$ rate = $k_2[NO_3][CO]$ mechanism 2 k_{1} [NO] assume $rate_1 = rate_{-1}$ MEANING: rate = k_2 [CO] $\underline{k_1}$ [NO₂] $k_1 [NO_2]^2 = k_1 [NO_3][NO]$ Different *k*₋₁ [NO] mechanism at $[NO_3] = \frac{k_1 [NO_2]^2}{2}$ higher temp.! = k_{obs} [CO][NO₂] *k*₁ [NO] [NO] rate = k_2 [CO] $\underline{k_1}$ [NO₂]² = k_{obs} [CO][NO₂]² Rxn inhibited \checkmark by product. *k*₁ [NO] [NO] (16)

Mechanism #1: CONSISTENT 1 step: $NO_2 + CO \rightarrow CO_2 + NO$ Predict: rate = $k [NO_2][CO]$

Mechanism #2: CONSISTENT <u>AT LOW T</u> Step 1: $NO_2 + NO_2 \rightarrow NO_3 + NO$ Step 2: $NO_3 + CO \rightarrow NO_2 + CO_2$ Predict: • If step 1 "slow": rate = $k_1 [NO_2]^2$ Note: at RT, exp'tally observed rate = $k_{obs}[NO_2]^2$ \rightarrow consistent with mechanism 2

MEANING: Different mechanism at higher temp.!

(13)

Mechanism #3: CONSISTENT Step 1: $NO_2 \rightarrow NO + O$ Step 2: $CO + O \rightarrow CO_2$ Predict:

 If step 2 "slow": rate = k₂[CO][O]
 k [CO][NO₂]

$$= k_{obs} \frac{[CO][NO_2]}{[NO]}$$

Rxn inhibited —

Would have to investigate further to rule out this mechanism.

NOTE: we can never say for sure that our mechanism is "correct", just consistent with experimental data.

ASSIGNED READINGS:

BEFORE NEXT CLASS:

Read: Ch.15 (all)

+ WORK ON Problems from Ch.15

MIDTERM EXAM: Fri. Feb. 29th covers: Ch. 6 (all), 9.8, 19.1-6, 13.1-5, 14 (all), 15 (all) practice general Qs, & midterms on website

(14)