CHEM 206 section 01	
LECTURE #16	Wed. March 5, 2008
LECTURE TOPICS:	
TODAY'S CLASS:	start Ch.16 & 19.7

NEXT CLASS: Ch.16...

(1)

Chapter 16: CHEMICAL EQUILIBRIA

- If reactions are reversible, won't the reverse reaction start competing with the forward reaction when products build up?
 VES... → link to kinetics
- How product-favoured or reactant-favoured is a reaction overall?
 → link to thermodynamics!

Chapter Outline

- 16.1 Nature of the equilibrium state 16.2 Reaction quotient (Q)
 - & equilibrium constant (K)

19.7 ΔG° , K & product-favorability

- 16.3 Determining an eq'm constant
- 16.4 Using eq'm constants in calculations
- 16.5 More about balanced equations & eq'm constants
- 16.6 Disturbing a chemical equilibrium
- 16.7 Applying the eq'm concept ...

Chapter Goals

- Understand the nature and characteristics of chemical equilibrium
- Understand the significance of the equilibrium constant, K
- Understand how to use the eq'm constant in quantitative studies of chemical equilibrium

Chemical processes are reversible (16.1, 16.2)

Principle of "microscopic reversibility" : all chemical processes <u>can</u> proceed in <u>both</u> directions

- HOWEVER: often EASIER in one direction (smaller E_a...)
- NET EFFECT: product-favoured vs. reactant-favoured?
 - \Rightarrow see ΔG_{rxn} ... determines difference between fwd vs rev E_a

For a 1-step r×n: m Reactant → n Product

Equilibrium = dynamic state where: Rate_{fwd} = Rate_{rev} THUS: k_{fwd} [reactant]^m = k_{rev} [product]ⁿ

19.7 $\triangle G^{\circ}$, K and product-favourability: at equilibrium, the more stable state dominates

FIRST: SOME NECESSARY CLARIFICATIONS ...

- ΔG° = change in free energy if reactants (in std states) are converted <u>completely</u> to products (in std states)
- Describes relative stability of pure reactants vs. pure products
- In reality: most reactions do not go to completion equilibrium is usually reached before then!

Thinking about driving force in a real mixture... See Kotz For rxn: $H_2O(g) + CO(g) \rightarrow CO_2(g) + H_2(g)$

For rxn: $2 H_2O(\ell) \implies H_2O^+(aq) + \ell$	OH-	(ag)
--	-----	------

 $\Delta G^{\circ} = +78.2 \text{ kJ/mol} \quad Only$

Only occurs to a TINY extent. Reverse rxn is enormously preferred.

Rxns proceed "downhill in energy" until reach equilibrium *i.e.*, until run out of net driving force (...rate_{fwd} = rate_{rev}) ...corresponds to mixture with $(G_{products} - G_{reactants}) = 0$

At eqm:
$$\Delta G^{\circ}_{r \times n} = -RT \ln K_{eq}$$

where $K = Q_{eq} = [\text{products}]_{eqm}^n$ [reactants]_{eqm}^m

∆ G ∘	K	At eqm	If mix reactants in std states
0	1	reactants & products	Already at equilibrium
< 0	> 1	products dominate	Driven to proceed forward
>0	< 1	reactants dominate	<u>Small</u> amount of fwd r×n happens

Do not misinterpret the term "equilibrium constant":

- Eqm constants K change with temperature
- At eqm: []s of products & reactants are <u>related</u>, not equal
- Eqm []s are constant in a given eqm mixture
 - \Rightarrow K will be same no matter what the []_os were
- ⇒ BUT: infinite sets of actual []_{eam}s can "satisfy" *K*

ASSIGNED READINGS:

BEFORE NEXT CLASS:

Read: Ch.16 section 16.1-16.2 & 19.7

+ WORK ON Problems from Ch.15

(11)