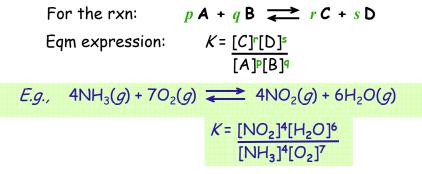
CHEM 206 section 01	l
LECTURE #17	Fri. March 7, 2008
LECTURE TOPICS:	
TODAY'S CLASS:	sect.19.7 & start Ch.16
NEXT CLASS:	finish Ch.16

(1)

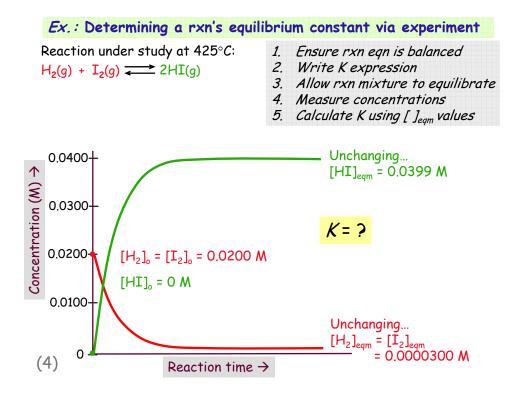
Magnitude of equilibrium constant describes rxn


Large $K \Rightarrow$ product-favoured rxn (eqm "positions" are mostly products) Small $K \Rightarrow$ reactant-favoured rxn (eqm positions are mostly reactants)

Reaction	Table 16.1	Equilibrium Constant K (at 25 °C)
Combination Red	actions of Nonmetals	
$2 H_2(g) + 0_2$	(g) \implies 2 H ₂ O(g)	3.2×10^{81}
$N_2(g) + 3 H_2$	(g) \implies 2 NH ₃ (g)	3.5×10^{8}
$N_2(g) + O_2(g)$) \rightleftharpoons 2 NO(g)	1.7×10^{-3} (at 2300 K)
Ionization of We	ak Acids and Bases	
CH ₃ CO ₂ H(aq) acetic acid	$+ H_2O(\ell) \longleftrightarrow CH_3CO_2^{-}(aq) + H_3O^{+}(aq)$	1.8×10^{-5}
$H_2CO_3(aq) + carbonic acid$	$H_2O(\ell) \iff HCO_3^-(aq) + H_3O^+(aq)$	4.2×10^{-7}
NH ₃ (aq) + H ₂ ammonia	$O(\ell) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$	1.8×10^{-5}
Dissolution of "I	insoluble" Solids	
$CaCO_3(s) \equiv$	$2 \text{ Ca}^{2+}(\text{aq}) + \text{CO}_3^{2-}(\text{aq})$	3.4×10^{-9}
) $AgCl(s) \rightleftharpoons$	Ag ⁺ (aq) + Cl ⁻ (aq)	1.8×10^{-10}

16.2: Equilibrium constants "Law of Mass Action"

Experimental observations of many many equilibria show:


- for ANY eqm system (single <u>OR</u> multistep...)
- we <u>can</u> use balanced chemical equation to write expression for the **equilibrium** constant (*recall: for <u>rate</u> constants, must know mechanism*)

To determine a reaction's equilibrium constant via experiment:

- mix reactants; be sure rxn has sufficient thermal E to proceed
- wait until []s of all species stop changing, then measure them
- sub #s into K expression (as above) \Rightarrow calculate value of K

 \Rightarrow K is a constant, applicable to that rxn at that temp.

If K is known: can find eqm conc'ns...using eqm data...

At 500K, $K = 6.9 \times 10^5$ for: $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$
If have 0.0010M O_2 & 0.050M NO at eqm, what is $[NO_2]_{eqm}$?

An "ICE table:	u	2NO(g) +	O₂(g) ∓	
TUDIE.	<u>I</u> nitial			
	<u>C</u> hange			
	<u>E</u> qm	0.050 M	0.0010 M	×

 $K = \frac{[NO_2]^2}{[NO]^2[O_2]}$

= :	1.3	Μ	(2	SF	7
		ר ר			
=	[NC	J2]	ear	n	

(5)

Gas-phase equilibria: two related forms of eqm constant			
For eqm: $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$			
$\mathcal{K}_{c} = \frac{[NH_{3}]^{2}}{[N]^{1}}$ Since PV = nRT for any gas: [] = <u>n</u> = <u>P</u> (P_{NH2}/RT)^{2} RT			
$[N_2][H_2]$ \Rightarrow Thus: $K = \frac{(N_1)(N_2)}{(N_1)(N_2)}$			
= 3.5×10 ⁸ at 25°C			
For gas-phase rxns: can also use partial pressures to define a K = $\frac{(P_{NH3})^2(RT)^{-2}}{(P_{N2})(RT)^{-1}(P_{H2})^3(RT)^{-3}}$			
$= \frac{(P_{NH3})^2}{(P_{N2})(P_{H2})^3} \times \frac{(RT)^{-2}}{(RT)^{-1}(RT)^{-3}}$			
$K_{\rm P} = \frac{({\rm P}_{\rm NH_3})^2}{({\rm P}_{\rm N_2})({\rm P}_{\rm H_2})^3} \qquad \qquad \underbrace{({\rm P}_{\rm N_2})({\rm P}_{\rm H_2})^3}_{K_{\rm P}} \underbrace{({\rm RT})^{-1}({\rm RT})^{-3}}_{({\rm RT})^{-2}} = ({\rm RT})^{-(-2)}$			
$\mathcal{K}_{p} = \mathcal{K}_{c}(RT)^{\Delta n_{gases}} \qquad $			
where Δn_{gases} = sum of coefficients of gaseous products minus sum of coefficients of gaseous reactants			
For this example: K _p = K _c × [(0.08206 L·atm/mol·K)(298K)] ⁻² = 5.9×10 ⁵			

LINKING THERMODYNAMICS & EQUILIBRIUM... Calculate the equilibrium constant for the formation of 1.00 mol of ammonia from hydrogen and nitrogen at 25°C.

 $^{1}/_{2} N_{2}(g) + ^{3}/_{2} H_{2}(g) \longrightarrow NH_{3}(g)$

What is the reaction's standard driving force?

$$\Delta G^{\circ} = -RT \ln \mathcal{K} \Rightarrow \mathcal{K} = e^{(-\Delta G^{\circ}/RT)} \Leftrightarrow \text{"thermodynamic eqm constant"}$$

$$= \mathcal{K}_{p} \text{ ...derived from } \Delta G^{\circ} \text{ for std.}$$

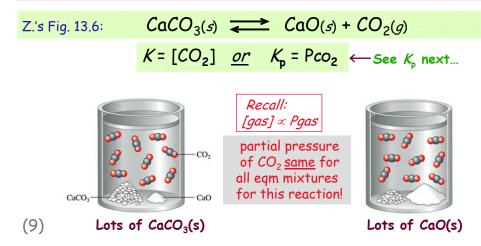
$$\text{state gases (1 atm each)}$$

$$\Rightarrow \mathcal{K}_{p} = 738 = \frac{P_{NH_{3}}}{(P_{N_{2}})^{0.5} (P_{H_{2}})^{1.5}}$$
(7)

The Law of Mass Action & Heterogeneous Equilibria If substance's concentration will NOT change, don't include it. (*e.g.*, pure solids, liquids, & solvents...) <u>WHY</u>?

 $H_2CO_3(aq) + H_2O(\ell) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq) \quad K = [HCO_3^-][H_3O^+]$ solvent $[H_2CO_3]$

WHY ARE SOLIDS & PURE LIQUIDS "IGNORED"?


<u>Pure substances have constant [], no matter the quantity:</u>

- Pure liquids: [] determined by liquid's density (a constant)
- Solvent: in excess, so even if involved in rxn, [] doesn't change much
- Solids: [] of molecules fixed by solid's density heterogeneous rxns occur only at surfaces...thus: complicated... BUT EVEN SO: exp'ts show that amount is unimportant!
- So: imagine [s or l] as multiplied into value of K (rather than ignored)
- In reality: strict definition of K seen in advanced courses leads to [s or l] being ~factored out (so, it <u>appears</u> to be ignored!)
- \Rightarrow Net effect: the link between values of K & ΔG°_{rxn} remains!

Heterogeneous Equilibria: rxns involving multiple phases *i.e.,* gases *vs.* solids & pure liquids (including H₂O(l) as solvent)

AS LONG AS <u>SOME</u> OF EACH PHASE IS PRESENT... the position of a heterogeneous equilibrium does <u>not</u> depend on the amounts of pure solids or liquids present

⇒ <u>Pure</u> solids & <u>pure</u> liquids are NOT included in *K* expressions.

Since K expression is written based on rxn's stoichiometry... ...the way the rxn is written is important! (see 16.5)

- The equilibrium expression for a rxn (K_1) is the reciprocal of that for the rxn written in reverse: $K_1 = 1/K_1$
- If the equation for a rxn is multiplied by some factor n (e.g., all stoich. coeff.'s scaled up...):

 If two eqm processes occur in sequence (*i.e.*, net rxn is sum of two rxns), then the overall eqm constant for the process is the product of the two individual eqm constants:

$$K_{r\times n(1+2)} = K_1 \times K_2$$

The units for K depend on the rxn being considered (like rate constants) BUT: conventionally, units are <u>not</u> given for eqm constants

Coupled reactions: using 1	rxn to drive another fwd
If we want to convert copper(I) oxide in • in one step: $\Delta G^{\circ} > 0 \Rightarrow K = e^{-\Delta G^{\circ}/RT} \ll 1$	nto copper metal (at 673K):
$Cu_2O(s) \rightleftharpoons 2Cu(s) + \frac{1}{2}O_2(g) \Delta G_{673K}^{o} =$	+125 kJ \Rightarrow $K_1 = 1.99 \times 10^{-10} = (PO_2)^{\frac{1}{2}}$
However, if we add a 2 nd step that uses ■ Le Chatelier's principle says: should d ■ K expression rules say: net rxn's equil ■ Thermodynamically: like a Hess's law o ⇒ free energy released in exergonic	rive 1^{st} eqm to the right (fwd) ibrium constant $K_{net} = K_1 \times K_2$ combination of rxns
$C(s) + \frac{1}{2}O_2(g) \rightleftharpoons CO(g) \Delta G^{\circ}_{673K} = -\frac{1}{2}$ NET RXN:	$175 \text{ kJ} \Rightarrow \mathcal{K}_2 = 3.83 \times 10^{13} = \frac{PcO}{(PO_2)^{\frac{1}{2}}}$
$Cu_2O(s) + C(s) \rightleftharpoons 2Cu(s) + CO(g) \Delta G$	° _{673K} = +125-175 kJ
Now, forming copper metal is favoured !	= -50 kJ net rxn fwd ! $K_{net} = 7.60 \times 10^3$ \checkmark $= K_1 \times K_2 \text{ (very close: 7.62 \times 10^3)}$ $= \frac{PCO(PO_2)^{\frac{1}{2}}}{(PO_2)^{\frac{1}{2}}}$
Recall: Bronze Age metallurgists' method	= PCO (matches rxn equation)

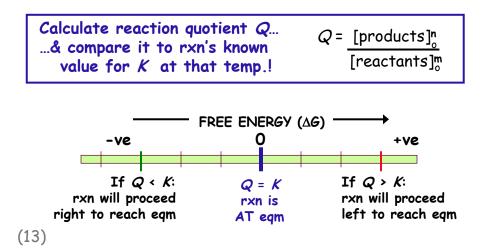
The many uses of equil	ibrium constants
<i>m</i> reactant \Rec <i>n</i> product	K = [product]n _{eqm} [reactant]m _{eqm}

1.) Can judge extent of rxn: how far rxn goes before reaches eqm

Small K	$10^{-3} < K < 10^{3}$	Large K
reactant-favoured	lots of both	product-favoured

2.) Can predict direction of rxn: net rxn until eqm is reached...

Q < K	Q = K	Q > K
proceeds fwd	already at eqm	proceeds reverse


3.) Can calculate **concentrations** of species present at eqm starting with ANY initial concentrations...

(NEXT)

2.) Predicting whether or not an observable rxn will occur *i.e.*, is the system already at eqm?

PRACTICAL QUESTION:

When you mix some substances together, do your initial []'s already correspond to eqm situation, or will a net rxn occur?

 $FeO(s) + CO(g) \rightleftharpoons Fe(s) + CO_2(g)$ $K_p = 0.259$ If initially Pco = 1.000 atm & $Pco_2 = 0.500$ atm, is the system at equilibrium? If not, which direction will the reaction proceed until it reaches equilibrium?

	FeO(<i>s</i>) +	CO(g) 🗲	≥ Fe <i>(s)</i> +	CO ₂ (g)
Initial	present	1.000 atm	present	0.500 atm
Change				
Eqm	present		present	

Which way will rxn proceed until reaching equilibrium?

$$Q = \frac{\rho_{co_2}}{\rho_{co}} \text{ using initial conditions...} \qquad Q = \frac{0.500 \text{ atm}}{1.000 \text{ atm}}$$
$$= 0.500 \Rightarrow 0.259 = K_p$$
Conclusion: free energy available to drive rxn LEFT...

(14) ...making Pco larger & Pco_2 smaller until $Q \rightarrow K$

3.) Determining what your eqm mixture will look like16.4-5 Solving Equilibrium Problems...

🗭 1 Write the balanced eq	uation for the reaction.	ALWAYS!
---------------------------	--------------------------	---------

 \blacktriangleright 2 Write the equilibrium expression using the law of mass action.+ find/calculate K

⇒ 3	List the initial concentrations.	Not REQUIRED						
➡ 4	Calculate Q, and determine the direction of the shift to equilibrium.	<i>Q</i> , and determine the direction of the shift to equilibrium. <i>Q</i> and determine the direction of the shift to equilibrium.						
	Define the change needed to reach equilibrium, and define the equilibrium concentrations by applying the change to the initial concentrations.							
₩ 6	6 Substitute the equilibrium concentrations into the equilibrium expression, and solve for the unknown.							
7 Check your calculated equilibrium concentrations by making sure they give the correct value of K.								
	SUMMARY: YOUR "TO DO" LIST Balance rxn equation "ICE" table: initial, change & eqm []'s						

• Eqm expression (K = ...)

THINK ...

1	1	5	١	
J	Ŧ	\mathcal{I}	J	

Finding eqm concentrations... (or partial pressures) ...*knowing initial conditions and K*

At 1000K, this rxn involved in making steel has $K_p = 0.259$: FeO(s) + CO(g) \implies Fe(s) + CO₂(g)

What are the eqm partial pressures of CO and CO ₂ if initially have $P co = 1.000$ atm & $P co_2 = 0.500$ atm? assume both solids are present at the end					
(or else won't be at equilibrium!)	1.	Rxn equation			
	2.	"ICE" table Eqm expression THINK			
	3.	Egm expression			
Same example as seen earlier	4.	THINK			

Same example as seen earlier... ...now in a more typical problem setting.

Recall: we already showed that this rxn will proceed LEFT (Q > K) as it approaches equilibrium...

(16)

 $FeO(s) + CO(g) \rightleftharpoons Fe(s) + CO_2(g) \qquad K_p = 0.259$ Assuming some FeO & Fe remain, what are $P_{eqm} co \& P_{eqm} co_2$ if initially P co = 1.000 atm $\& P co_2 = 0.500$ atm?

So, at eqm: P co = 1.000 + 0.191 = 1.191 atm $P co_2 = 0.500 - 0.191 = 0.309$ atm Note: you don't NEED to find Q 1st! Can put "-x" for reactants and "+x" for products & the algebra takes care of the signs. Try it for yourself....

ASSIGNED READINGS:

BEFORE NEXT CLASS:

Read: Ch.19.7,

Ch.16 up to section 16.4

+ WORK ON Problems from Ch.19, Ch.16