CHEM 206 section 01	
LECTURE #2	Wed. Jan. 09, 2008
ASSIGNED READIN	IGS:
TODAY'S CLASS:	continue Ch.6 (& <mark>9.10)</mark>
NEXT CLASS:	finish Ch.6 start Ch. 19.1-19.5
Remember: labs/tutor	ials start this week

nember: labs/tutorials start this week Chem 101 seminars this & next week

(1)

6.4 The First Law of Thermodynamics

1st Law: The energy of the universe is constant.

"ENERGY BOOKKEEPING": 1st law in mathematical form

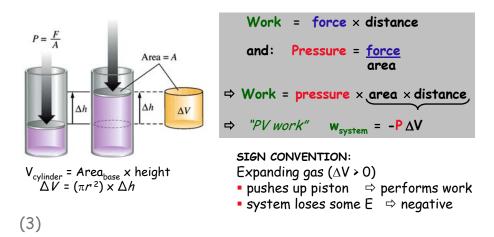
If a system loses energy (as either HEAT or WORK), the energy must go into the surroundings... & vice versa

 $\Delta E = q + w$

 ΔE = change in system's "internal" energy

- q = heat (heat leaving system = -ve)
- w = work (work done by system = -ve)

Internal Energy "E" = sum of all potential and kinetic energies of the atoms, molecules or ions in the system...


...hard to determine, but measuring CHANGES (ΔE) is easy

(2)

What is work? See: Kotz p.252 A Closer Look at bicycle pumps

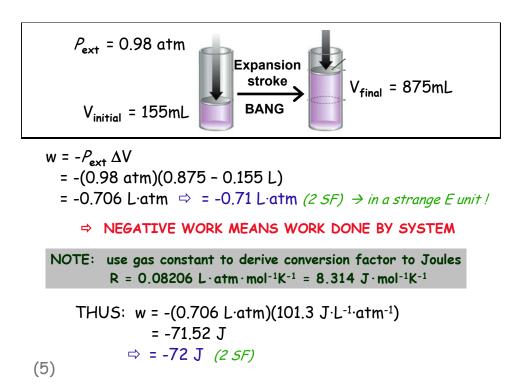
Work is energy spent PUSHING matter around. ...happens if a system's VOLUME changes!

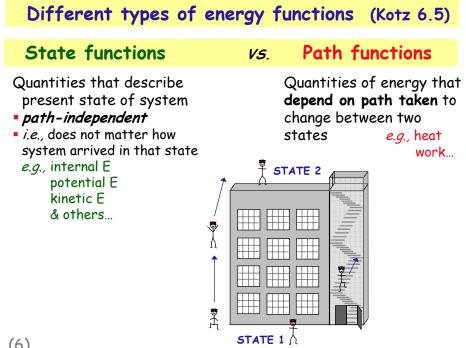
- Important for gases ⇒ easy to expand or compress!
- NOT important if only solids & liquids are involved

 Controlled explosions: PV work in an engine

 SUCK

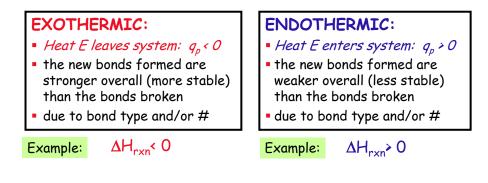
 SQUEEZE

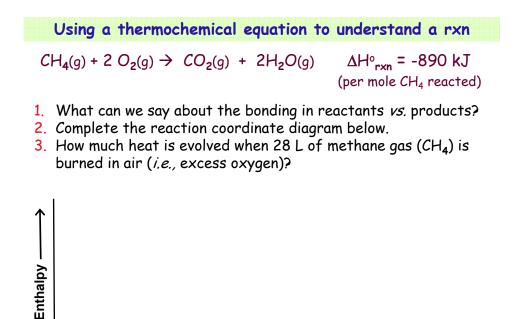

 Air-fuel


 Mixture IN

When the spark ignites the fuel-air mixture inside a cylinder in a standard 4-stroke automobile engine, the resulting gaseous combustion products expand against a constant external pressure P_{ext} of 0.98 atm (*i.e.*, atmospheric P).

IF: Volume at end of compression stroke = 155 mL Final volume after expansion = 875 mL,


what quantity of work is done during the expansion stroke?



(6)

6.5 For processes occurring <u>at constant pressure</u>, heat flow (q_p) reveals a change in bond strengths

HEAT OF REACTION: ΔH_{rxn} = enthalpy change for rxn = difference in chemical potential E of products & reactants = difference in "ENTHALPY" (H)

Rxn coordinate -(rxn progress)

(8)

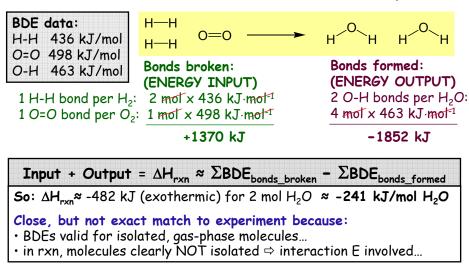
ANS ⇒ EVOLVES 1100 kJ of heat

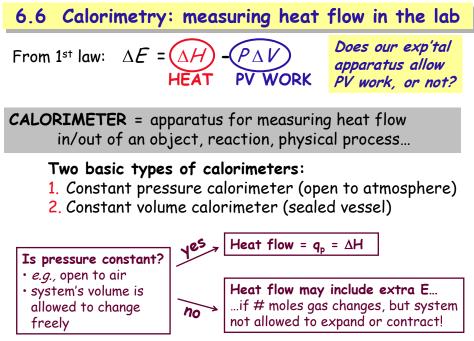
Enthalpy (H): a state function related to bond strengths

Chemical potential E = stabilization due to BONDS Stronger bond ⇒more stabilization ⇒more heat released when bond FORMS

⇒more heat required for bond to BREAK

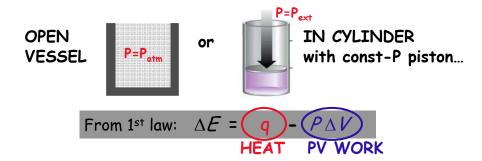
 ΔH_{rxn} = Difference in chemical pot'l E between products & reactants


net E difference due to some bonds broken & new ones formedHEAT FLOW FOR RXN/PROCESS AT CONSTANT PRESSURE

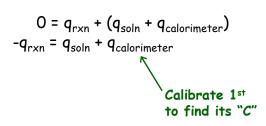

Table 9.9	 Some Average 	Single- and	Multiple-Bond	Energies	(kJ/mol)
-----------	----------------------------------	-------------	---------------	----------	----------

					Single	Bonds						Bond dis	socia	tion e	nera
	н	С	N	0	F	Si	Р	S	Cl	Br	I	= energy			
Н	436	413	391	463	565	328	322	347	432	366	299				
С		346	305	358	485	_		272	339	285	213	break 1 r			5
N			163	201	283			_	192	_		type of b	ond.		
0				146	—	452	335	_	218	201	201				
F					155	565	490	284	253	249	278				
Si						222		293	381	310	234	Mu	ltiple E	sonas	
Ρ							201	-	326		184	N = N	418	C = C	610
S		Ka	otz 🛛					226	255			N = N	945	C = C	835
CL		60	tion:	-					242	216	208	C == N	615	C = 0	745
Br										193	175	C = N	887	$C \equiv 0$	1046
I		6.5	5 & .	9.10	7						151	$0 = 0$ (in 0_2)	498		

EXAMPLE: Use bond energies to estimate ΔH_{rxn} for the formation of water from the elements (& then compare to experiment...): $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$ By expt: $\Delta H_{rxn} = -285.83$ kJ/mol H₂O


Based on bonds broken *vs.* bonds formed, we can estimate the enthalpy difference between "state 1" = reactants *AND* "state 2" = products:

(11)


Set-up #1: system at constant pressure = P_{ext} VOLUME OF SYSTEM CAN CHANGE IF IT NEEDS TO...

If process involves	Does volume change?	Work done?	Measuring heat flow (q _p) tells us
Change in # moles of gas	Expands or contracts	Yes	$q_p = \Delta H$ & total $\Delta E = \Delta H - P \Delta V$
Only solids or liquids	Not really	No	$q_p = \Delta H \& \Delta E = \Delta H since w=0$ Here, all E change is due to heat.

Constant pressure calorimetry Use this in Expt.#2 Use this in Expt.#2 See Figure 6.16: A "coffee-cup calorimeter" A "coffee-cup calorimeter" Const. P \Rightarrow $q_{rxn} = \Delta H_{rxn}$

Heat released by reaction is absorbed by (solution & calorimeter)...

(13)

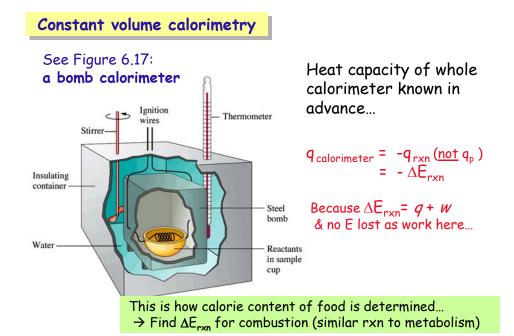
Ħ

Styrofoam cover

Styrofoam

cups

Stirrer


Think about the following reactions... (performed under constant pressure conditions)

- 1.) $Mg(s) + 2HCl(aq) \rightarrow H_2(g) + MgCl_2(aq)$
- 2.) $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$
- 3.) $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$

Rxn	Δn_{gases}	Any work?	Sign of ∆V	Sign of work	ΔH vs. ΔE Equal or not?
1					
2					
3					

On your own: consider rxn 1 with 1 mole of Mg (as limiting reactant) & calculate the work done (P_{ext} = 1 atm, T = 298 K)

Set-up 7	#2: se	aled,	constant-volume container				
Sealed vessel, called a bomb VOLUME OF SYSTEM <u>CANNOT</u> CHANGE. THUS: PRESSURE MIGHT BUILD UP (extra E "trapped") or DROP (less E) From 1 st law: $\Delta E = (q_i) - (P \Delta V)$							
	HEAT PV WORK						
If process involves	Volume changes?	Work done?	Measuring heat flow (q _v) tells us				
Net gas formation ∆n _{gases} > 0	No- it can't!	No!	$\Delta E = q_v - 0 \Rightarrow$ Learn nothing of ΔH . Energy normally spent by expanding is trapped as heatnot just ΔH 's heat.				
Net gas consumption ∆n _{gases} < 0	No- it can't!	No!	$\Delta E = q_v - 0 \Rightarrow$ Learn nothing of ΔH . No energy gained by surr. compressing system \therefore less heat than system's bond rearrangements should yield.				

(16)

ASSIGNED READINGS:

BEFORE NEXT CLASS: Review and...

*Read 206 material: Ch.6 sections 6.1-6.6 & 9.10

+ WORK ON Ch.6 PROBLEMS (up to #42)

BEFORE FIRST LAB:

*Review from 205: Ch.12 concepts, & read 12.6-12.9

Remember:

 Labs start THIS WEEK (Tues aft, Wed aft, Thurs eve.) arrive prepared: lab coat & glasses completed Expt.#1 prelab completed tutorial homework

• Chem101 seminars this Friday & next week