CHEM 206 section 01	
LECTURE #20	Wed. March 19, 2008
LECTURE TOPICS:	
TODAY'S CLASS:	continue Ch.17
NEXT CLASS:	continue Ch.17

(1)

$K_a \& pK_a$: a way to quantify acid strength						
See K&T huge Table 17.3 Zumdahl's table \downarrow $HA + H_2O \rightleftharpoons A^- + H_3O^+$						
TABLE 14.2 Values of K _a for Some Common Monoprotic Acids						
	Formula	Name	Value of K_{a}^{*}	p <i>K</i> a		
	HSO₄ [−]	Hydrogen sulfate ion	1.2×10^{-2}	1.92 ↑		
	HClO ₂	Chlorous acid	1.2×10^{-2}	1.92 _		
	$HC_2H_2ClO_2$	Monochloracetic acid	$1.35 imes 10^{-3}$	2.87 Ist		
	HF	Hydrofluoric acid	$7.2 imes10^{-4}$	3.14 E		
	HNO ₂	Nitrous acid	$4.0 imes10^{-4}$	3.40 p		
	$HC_2H_3O_2$	Acetic acid	$1.8 imes 10^{-5}$	4.74 [`] ?		
	$[Al(H_2O)_6]^{3+}$	Hydrated aluminum(III) ion	$1.4 imes 10^{-5}$	4.85 ^{co}		
	HOCI	Hypochlorous acid	$3.5 imes 10^{-8}$	7.46 Sg		
	HCN	Hydrocyanic acid	$6.2 imes 10^{-10}$	9.21 J		
	NH4 ⁺	Ammonium ion	$5.6 imes 10^{-10}$	9.25 -		
	HOC ₆ H ₅	Phenol	$1.6 imes 10^{-10}$	9.80		

NOTE: K_a 's of "strong" acids too large to measure in H_2O ...because they ionize ~fully, we can't measure all []'s!

17.7 Calculations with equilibrium constants

Some typical scenarios:

1.) Use solution pH to find K_a (or K_b).

Q: When a solution of weak acid HA (or base B) of known initial concentration is prepared, the pH of the solution is _____. Find K_a (or K_b).

 2.) Determine the pH of a solution of a weak acid (or base).
Q: When a solution of known initial concentration of a certain weak base (known K_b) is prepared, what is the pH?

3.) Determine the pH of a solution after an acid/base rxn.
Q: When a known volume of solution of acid HA is mixed with a known volume of strong base, what is the pH of the resulting solution?

(4)

APPLYING OUR EQM CALCULATIONS: (17.7) Finding the pH of a weak acid solution...

Q: What is the pH of a typical vinegar solution? → vinegar = 5% v/v acetic acid → acetic acid: MM = 60.05 g/mol; d = 1.049 g/mL

APPROACH:

- LOOK UP: K_a of CH₃COOH...
- USE EQM ATTACK PLAN: balance chemical equation write eq'm expression for K_a set up an ICE table calculate [CH₃COOH]_o in <u>molarity</u> & put into ICE table solve for [H₃O⁺]

```
(5) ...& use pH = -log[H_3O^+]
```

Q: What is the pH of a typical vinegar solution? • vinegar = 5% v/v acetic acid → 5mL HA in approx. 100mL total • acetic acid: K_a=1.82×10⁻⁵; MM=60.05 g/mol; d=1.049 g/mL

 \rightarrow [HA]_o=[(5mL*1.049g/mL)/60.05g/mol] / (0.100L) ≈ 0.873 M

Summary of acid strengths

PROPERTY	STRONG acid	WEAK acid
K_{a} value	very large	small
pK_{a} value	very small	large
Equilibrium position	right	left
[H⁺] compared to [HA] ₀	$[H^{\star}] \approx [HA]_0$	[H⁺] << [HA]₀
Strength of conjugate	A⁻ is very	A ⁻ is much
base A ⁻ compared to H ₂ O	WEAK	STRONGER
(7)		

Many molecules...distribution of energies...fwd & reverse r×n... At EQM: more molecules of the stronger base are bonded to H⁺!

RELATING STRENGTHS OF ACIDS & THEIR CONJUGATE BASES

The numerical values shown refer to: pK_a values of conj. acids (\circ) & pK_b values of conj. bases (\bullet).

The labels strong, weak & very weak refer to the acid (○) OR base (●) that appears in that region of the figure.

JChemEd.chem.wisc.edu Journal of Chemical Education Vol. 78 No. 11 November 2001 **1495**

Weak acids have weak conj. bases. Both react noticeably with H₂O.

ASSIGNED READINGS:

BEFORE NEXT CLASS:

Read: Ch.16 (all),

Ch.17 up to section 17.4 (to 6th Ed. p.809), & 17.7 (to 6th Ed. p.824)

+ WORK ON Problems from Ch.16, Ch.17 including finding the pH of weak acid solutions *e.g.*, section 17.7 problems, #47-50

(10)

Zumdahl's Figure 14.10 Extra information: % DISSOCIATION: extent of ionization depends on [initial] [A-] × 100% More concentrated More dilute % diss'n = [HA] Acid concentration For 5% acetic acid example: [3.99×10⁻³ M] Percent dissociation x 100% % diss'n = [0.873 M] = 0.457 % H⁺ concentration = 0.5 % (1SF in data)

<u>PROVE IT TO YOURSELF</u>: On your own, use calculations to show that a **lower %** of the acetic acid molecules are ionized in 2.5 M CH_3COOH than in a 2.5×10^{-3} M solution, even though the more concentrated acid solution indeed has a lower pH.