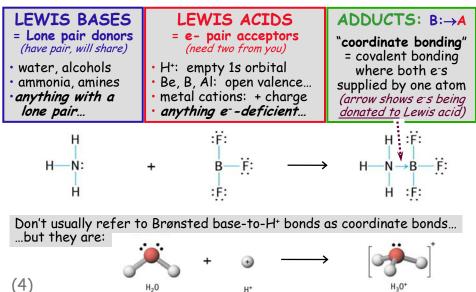
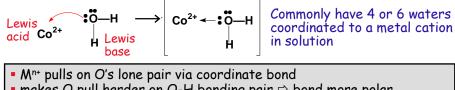

CHEM 206 section 01	
LECTURE #21	Wed. March 26, 2008
LECTURE TOPICS:	
TODAY'S CLASS:	continue Ch.17
NEXT CLASS:	continue Ch.17

(1)

So: to understand acids, we must learn to analyze <u>base strength</u>. = basicity

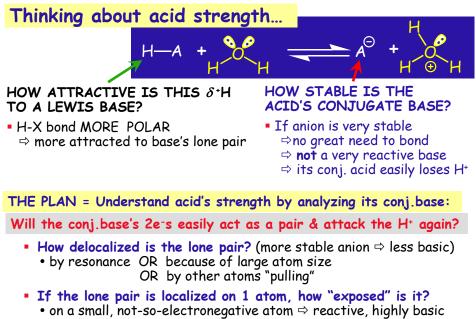

Can we predict variations in acidity & basicity?

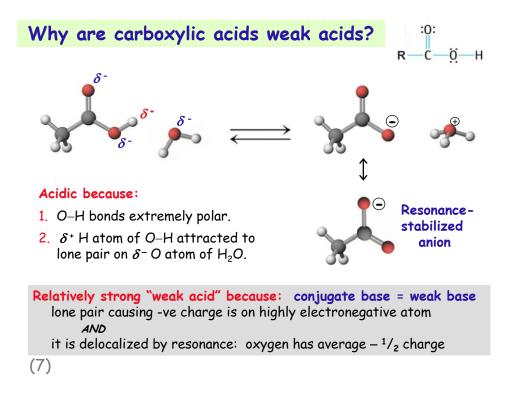
To address this properly:
Must learn more about the interaction between lone pairs & H⁺
Start by learning GENERAL ideas of this type...

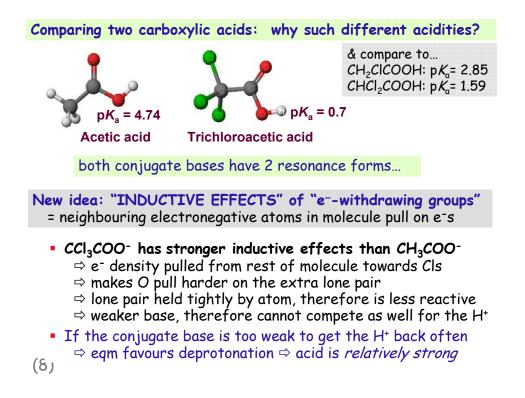

(3)

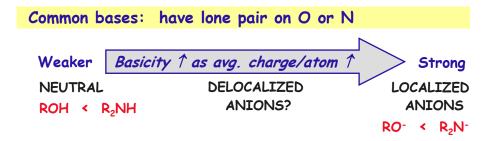
17.9 Lewis acid-base theory: a general view

Mechanistic view: δ⁺ & δ⁻ interact → orbital overlap → e⁻sharing...
 Explains many types of rxns, including H⁺ transfer rxns

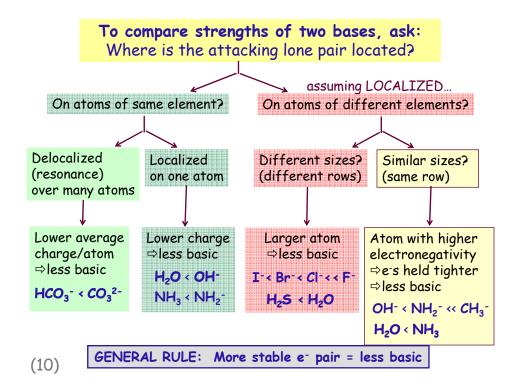

Solutions of highly-charged metal cations are acidic due to Lewis acid-base interactions of M^{n+} & H₂O (Fig. 17.6)

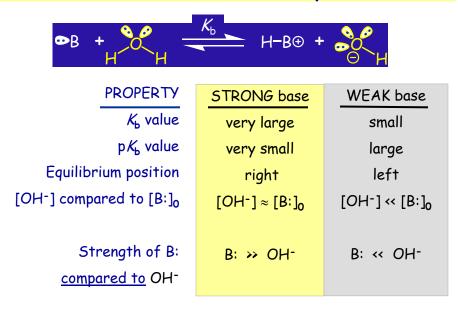

makes O pull harder on O-H bonding pair ⇒ bond more polar


- H is more δ⁺ ∴ more attractive to incoming bases
 ⇒ Coordinated water molecules (pK_a ~ 3-7) are more acidic than free water molecules (pK_a = 14)
- HYDROLYSIS occurs: solvent-H₂O deprotonates a coordinated-H₂O [Co(H₂O)₆]²⁺ + H₂O → [Co(H₂O)₅(OH)]⁺ + H₃O⁺



• on a highly electronegative atom ⇒ not very reactive, less basic





Basicity of oxoanions varies with # resonance structures & charge

Ion	NO3-	CO32-	PO43-	CH ₃ O-
Charge/O				
р <i>К</i> ь	huge	3.68	1.55	< 0
Basicity	Extremely weak base	Moderate weak base	Relatively strong weak base	STRONG base
CA's pK _a	< 0	10.32	12.45	Huge (> 14)

BASES: react with water to yield OH-...

(11)

ASSIGNED READINGS:

BEFORE NEXT CLASS:

Read: Ch.17 up to section 17.4 (to 6th Ed. p.809), & 17.7 (to 6th Ed. p.824) & 17.10

+ WORK ON Problems from Ch.16 & Ch.17 including finding the pH of weak acid solutions *e.g.*, section 17.7 problems, #47-50


(12)

Extra example: why it is so interesting to know something about Lewis acids & bases...

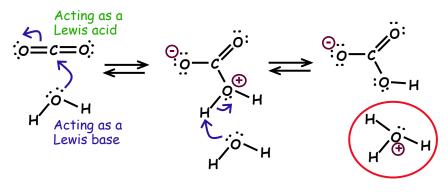
(13)

Aside: biological relevance of Lewis acid-base interactions...

e.g., heme groups in hemoglobin...

A Heme group:
a planar ring of C,N,H
4 N atoms = Lewis bases each has 3 bonds & 1 lone pair
an Fe(II) cation = Lewis acid coordinated by these N atoms & held in centre of ring

- Heme Fe^{II} is "open" on top/bottom
 - One side bound to protein (e.g., bottom)
 - Other side can accept another lone pair
- THUS: can interact with Lewis bases
 - O2 = desirable...but binds weakly
 - **CO** = undesirable...and binds strongly


TASK: draw Lewis structures (+ formal charges) to rationalize differing abilities to coordinate...

(14)

Some <u>molecules</u> are Lewis acids ...which leads to their solutions being acidic (*i.e.*, low pH...)

Recall: CO₂, SO₂, NO₂ ...nonmetal oxides yield acidic solutions in water

WHY do they react with water? WHY does the soln become acidic?

(15)