CHEM 206 section 01

LECTURE #26

Fri. April 11, 2008

LECTURE TOPICS:

TODAY'S CLASS: finish Ch.18 to 18.5

FINAL EXAM: Saturday April 19th (9am-12pm)

 Covers entire course: Ch.6, 9.8, 19, 13.1-5, 14, 15, 16, 17, 18.1-5

FINAL EXAMS FROM PREVIOUS YEARS ON WEBSITE Moodle site has link to: http://faculty.concordia.ca/rogers

(1)

18.4 Solubility of salts - more Applied Equilibria!

CLASSIC EXAMPLE: Tooth enamel

- contains insoluble mineral, hydroxyapatite: Ca₅(PO₄)₃OH
- in constant contact with water:

 $Ca_5(PO_4)_3OH(s) \rightleftharpoons 5 Ca^{2+}(aq) + 3 PO_4^{3-}(aq) + OH^{-}(aq)$

SO WHY DOES TOOTH DECAY OCCUR?

Even if only a small amount dissolves:

- OH⁻ ions are released
- react with acids in foods
 - & acids produced by bacteria in plaque
- equilibrium shifts right!
 - ⇒ tooth decay occurs when mouth is acidic!

Another "special" eqm constant: Solubility Product, K_{sp}

In an aqueous solution **saturated** with an ionic compound: equal rates of dissolving & precipitating...

Relative terms:Soluble, slightly soluble & insoluble...SOLUBLE SALTS:Large $K_{sp} \Rightarrow$ high solubility ("soly")
= high [ions] in sat'd sol'n
Salts with $K_{sp} > 1$ not listed in tables:
alkali metal salts, nitrate salts, most halide salts...
remember solubility trends from Chem 205 - Kotz Ch.5SLIGHTLY SOLUBLE SALTS:Moderate K_{sp}
= 1.2×10^{-5}
 $= PbCl_2$ • Ag_2SO_4
 $K_{sp} = 1.6 \times 10^{-5}$ INSOLUBLE SALTS:Very small $K_{sp} \Rightarrow$ very low sol'y
Trace amounts will dissolve:
= AgCl
 $= K_{sp} = 1.8 \times 10^{-10}$
 $= Ca_3(PO_4)_2$
 $K_{sp} = 4 \times 10^{-38}$
= HgS•HgS•HgS•Kap = 1.6 \times 10^{-54}

At 25°C, the eqm constant for dissolving solid AgCl is 1.8×10^{-10} : AgCl(s) \Longrightarrow Ag⁺(aq) + Cl⁻(aq) Calculate the free E for precipitating AgCl(s) under std conditions. $K = 1.8 \times 10^{-10} = [Ag^+][Cl^-]$ AgCl(s) not included because it is a SOLID... K for precipitation = reciprocal of K for dissolving $= 1/(1.8 \times 10^{-10})$ $= 5.6 \times 10^9$...a K_c since reactants in solution $\Delta G^{\circ} = -RT \ln K$ $= -(8.324 \text{ J} \cdot \text{mol}^{-1} \text{ K}^{-1})(298\text{ K}) \ln(5.6 \times 10^9)$ $= -556100 \text{ J} \cdot \text{mol}^{-1} = -560 \text{ kJ} \cdot \text{mol}^{-1}$ to 2 SF \Rightarrow this came from a K_c thus applies to reactants in solution $\Delta G^{\circ} < 0 \Rightarrow$ pptn of AgCl(s) is thermodynamically favoured!

Spontaneous fwd r×n ⇒product-favoured ⇒ it's not very soluble!

(5)

Solubility & Concentration of dissolved ions

SOLUBILITY of a substance: "s" = maximum amount of substance that will dissolve (in water) at a given temperature (usually expressed as g/100mL at 25°C)

s = concentration of a SATURATED SOLUTION

recall: to prepare a saturated solution, keep adding solute until some remains UNDISSOLVED

In sat'd sol'n: rate of dissolution = rate of precipitation ⇒ *i.e.*, a saturated solution is at EQM !

Is "solubility" the same as "dissolved ion concentation" ? Sometimes yes, sometimes no:

 $Bi_2S_3(s) \rightleftharpoons 2Bi^{3+}(aq) + 3S^{2-}(aq)$

"Solubility" = s = amount of <u>compound</u> dissolved in given volume, Here: s = $[Bi_2S_3]$ = $1/2[Bi^{3+}] = 1/3[S^{2-}]$

Remember: solubility depends on what else is present in the soln... e.g., a common ion? or something that reacts with the ion(s)?

Ex.1: Determining ion concentrations (sat'd sol'ns) using K_{sp}

You are working with mercuric iodide, HgI_2 ($K_{sp} = 3 \times 10^{-29}$). What will the concentrations of each ion be in a saturated aqueous solution at room temperature?

$\operatorname{HgI}_{2}(s) \rightleftharpoons \operatorname{Hg}^{2+}(aq) + 2 \operatorname{I}^{-}(aq)$				Notice impact of
Initial	present	0	0 M	1:2 ion ratio
Change		+x	+2x 🗲	$K = [H_0^2 + 1]T - 1^2$
Eqm	present	×	2x	

Note: Let [HgI₂] dissolved = x = same as solubility, s! (can use ICE table, but don't need to...)

Ex.2: Effect of common ion on solubility - v.1

How different is the solubility of HgI_2 ($K_{sp} = 3 \times 10^{-29}$) in water vs. in 0.050 NaI sol'n? Last ex - in water: $[Hg^{2+}]_{satd} = 2 \times 10^{-10} M$

$HgI_2(s) =$	→ Hg²+(aq	<i>ı</i>) + 2	I⁻(<i>aq</i>)
--------------	------------------	----------------	-----------------

Initial	present	0	0.050 M
Change		+X	+2x
Eqm	present	×	0.050 + 2x

 $K_{sp} = [Hg^{2+}][I^-]^2$

Some I⁻ already present in solution, so:

 $3 \times 10^{-29} = (x)(0.050 + 2x)^2$ Note small K_{sp} ...use approx'n:

$$3 \times 10^{-29} \approx (x)(0.050)^{2}$$

x = 1x10⁻²⁶ = [Hg²⁺] = [HgI₂]_{max} in 0.050M NaI solution

 Solubility decreases in presence of common ion
 Solubility increases if common ion is removed via rxn (e.g., if ion is basic & we make the solution acidic...) Common ion effect - v.2: reacting away an ion (pH effect) $CaCO_{3}(s) \rightleftharpoons Ca^{2+}(aq) + CO_{3}^{2-}(aq) \qquad K_{sp}=3.4\times10^{-9}$ Basic anion \Rightarrow eqm will shift right in acid!

Ex.3: Limestone dissolves in acid & bubbles of gas form. WHY?

$CaCO_3(s) \rightleftharpoons Ca^{2+}(aq) + CO_3$	$K_{sp} = 3.4 \times 10^{-9}$
$CO_3^{2-}(aq) + H_2O(l) \implies HCO_3^{-}(aq) + CO_3^{-}(aq) + CO_3^{-$	$H^{-}(aq) = K_{b1} = 2.1 \times 10^{-4}$
$HCO_3^{-}(aq) + H_2O(l) \implies H_2CO_3(aq) + Q$	$OH^{-}(aq) K_{b2} = 2.4 \times 10^{-8}$
$2[H_3O^+(aq) + OH^-(aq) \implies 2H_2O(h)]$	$K = [1/K_w]^2 = 10^{28}$
NET: $CaCO_3(s) + 2H_3O^+(aq) \implies Ca^{2+}(aq)$	7)+H2CO3(aq)+2H2O(1)
When add rxns eqns \Rightarrow multiply Ks: K_{ne}	$_{et} = K_{sp} K_{b1} K_{b2} K = 1.7 \times 10^8$
But recall: carbonic acid is unstable:	

 $H_2CO_3(aq) \rightleftharpoons H_2O(1) + CO_2(g) \quad K = \sim 1 \times 10^5$ $CaCO_3(s) + 2H_3O^+(aq) \rightleftharpoons Ca^{2+}(aq) + CO_2(g) + 3H_2O(1)$ Large $K \Rightarrow$ fully soluble in acid, + gaseous product. $K_{overall} = 2 \times 10^{13}$!
(...& gas leaves... \therefore might never reach eqm, just keeps shifting right...)

Things we can do with solubility equilibria

$$Ca_{5}(PO_{4})_{3}OH(s) \rightleftharpoons 5 Ca^{2+}(aq) + 3 PO_{4}^{3-}(aq) + OH^{-}(aq)$$

 $K_{sp} = [Ca^{2+}]^{5}[PO_{4}^{3-}]^{3}[OH^{-}] = 6.8 \times 10^{-37}$

Highly soluble in acid (due to consumption of OH⁻) Highly <u>in</u>soluble in base (due to common ion effect)

Product of dissolved ion concentrations is CONSTANT ...

- Can calculate conc. of ions in a sat'd sol'n of any ionic compound whose K_{sp} is known
- If have another source of "common" ion, the solid won't be as soluble as in pure water...
- If one of the ions is consumed via another reaction, the solid will be more soluble than in pure water...
- Can determine whether a given mixture will exceed max. solubility of dissolved solids ⇒ will ppt form (Q_{sp} > K_{sp})?

(10)

18.5 Precipitation reactions (last 206 text section)

- Solubility differences are used to separate ions (details? 15.7)
- Can determine if a precipitate will form when solutions are mixed...or when add solid to a soln...*etc*. (you ARE responsible for <u>this</u> -- simple application of Q vs. K!)

Initially: Reaction quotient (Q) = Ion product, Q_{sp} At eqm: Equilibrium constant (K) = Solubility product, K_{sp}

Ex.4: Will this person get kidney stones? W05 final, #10

People develop kidney stones when insoluble compounds like calcium phosphate, $Ca_3(PO_4)_2$ ($K_{sp} \approx 1 \times 10^{-25}$) precipitate out of their urine.

Urine normally contains about 5.33 g/L of Ca^{2+} ions. What concentration of phosphate ions (in molarity) would cause calcium phosphate to begin precipitating from urine?

$$Ca_{3}(PO_{4})_{2}(s) \rightleftharpoons 3 Ca^{2+}(aq) + 2 PO_{4}^{3-}(aq) \qquad K_{sp} = [Ca^{2+}]^{3}[PO_{4}^{3-}]^{2}$$
In urine (fixed): $[Ca^{2+}]_{o} = (5.33 \text{ g} / 40.08 \text{ g/mol}) = 0.1330 \text{ mol/L}$

$$1 \text{ L}$$
Precipitation will occur as soon as: $Q_{sp} > K_{sp} \leftarrow \text{let's find } [PO_{4}^{3-}]$

$$Q_{sp} = K_{sp} = [Ca^{2+}]^{3}[PO_{4}^{3-}]^{2}$$

$$1 \times 10^{-25} = (0.1330 \text{ M})^{3} [PO_{4}^{3-}]^{2}$$

$$\Rightarrow [PO_{4}^{3-}] = \sqrt{(1 \times 10^{-25} / (0.1330 \text{ M})^{3})}$$

$$\approx 7 \times 10^{-12} \text{ M} \leftarrow \text{above this } [PO_{4}^{3-}], Ca_{3}(PO_{4})_{2}(s)$$

$$precipitation would occur$$

Ex.5: Waste-water treatment & toxic waste

Allowed limit in waste-water: $[Pb^{2+}] < 5 \text{ ppm} (\approx \text{mg/L})$ Higher than this conc.: must treat as "toxic waste" disposal is expensive!

To \downarrow [Pb²⁺]: add something to ppt lead as insoluble salt

APPROACH:

1 possibility: NaCl

- add precipitating agent (cheap, non-toxic...)
- filter off ppt & dispose of with toxic waste
- ppt out PbX₂(s) measure [Pb²⁺] remaining in solution (= [Pb²⁺]_{egm}...)
- If [Pb²⁺]_{eam} < 5 mg/L, dispose of with regular waste...

 $PbCl_2(s) \longrightarrow Pb^{2+}(aq) + 2Cl^{-}(aq)$

Note: must convert ppm to molarity to use eqm expression...

 $\left(\frac{5 \text{ mg Pb}^{2+}}{1 \text{ kg sofn}}\right) \times \left(\frac{1 \text{ kg sofn}}{1 \text{ L soln}}\right) \times \left(\frac{1 \text{ g}}{1000 \text{ mg}}\right) \times \left(\frac{1 \text{ mol Pb}^{2+}}{207.2 \text{ g}}\right) = 2.41 \times 10^{-5} \text{ M}$ (13)

NaCl is CHEAP! & PbCl₂ only slightly soluble, $K_{sp} = 1.6 \times 10^{-5}$. How much NaCl must be added to 500 L of a waste solution containing 10 mg/L dissolved lead in order to decrease the dissolved lead to 5 mg/L $(2.41 \times 10^{-5} \text{ M})$?

$$\mathsf{PbCl}_{2}(s) \overset{\longrightarrow}{\longrightarrow} \mathsf{Pb}^{2+}(aq) + 2\mathsf{Cl}^{-}(aq) \qquad \mathsf{K}_{\mathsf{sp}} = [\mathsf{Pb}^{2+}][\mathsf{Cl}^{-}]^{2}$$

I.	present	4.83x10 ⁻⁵ М	Initial = [Cl-] _o
С.	+ X	- x = -2.41x10 ⁻⁵	<i>- 2x = -4.83x10⁻⁵</i>
Ε.	less	2.41x10 ⁻⁵ M	Eqm = [Cl−] _{eam}

Precipitation leads to egm being established: $1.6 \times 10^{-5} = (2.41 \times 10^{-5}) ([Cl_{eam})^2)$ $([C|-]_{eqm})^2 = 0.6639$ [Cl-]_{eam}= 0.8148 M To treat 500 L wastewater: $n_{NaCl} = (500 L)(0.8148 M)$ So: $[C^{-}]_{initial} = [C^{-}]_{eqm} + 4.83 \times 10^{-5} \text{ M}$ = 407 mol NaCl required = 0.8148 + 4.83×10⁻⁵ M m_{NaCl} = 407 mol x 58.45 g/mol ≈ 0.8148 M = 23800 g ≈ 24 kg *(to 1 SF = 20 kg)* But, add MORE to be certain... (14)

FINAL EXAM INFORMATION

Final exam: Saturday April 19th (9am-12pm)

Covers entire course: Ch.6, 9.8, 19, 13.1-5, 14, 15, 16, 17, 18.1-5

- The examination room invigilators are VERY STRICT:
 - Student ID card mandatory
 - No programmable calculators
 - No electronic dictionaries, cell phones, pagers, blackberries, etc
 - Book-format translation dictionaries (word-to-word only) allowed, but they will be inspected.
 - Arrive to the exam room early !

FINAL EXAMS FROM PREVIOUS YEARS ON WEBSITE: Moodle site has link to: http://faculty.concordia.ca/rogers

(15)

Sample exam question

Winter 2004 section 02

7. (_/ 9 marks) You are asked to prepare a 100.0 mL sample of a solution with pH of 5.50 by dissolving the appropriate amount of a solute in pure water (pH 7.00). Which ONE of the following solutes would you use, and in what quantity? EXPLAIN YOUR CHOICE, AND SHOW ALL RELEVANT CALCULATIONS.

CIRCLE YOUR CHOICE:

- a) 15 M NH₃(aq)
- b) 12 M HCl(aq)
- c) NH₄Cl(s)
- d) Pure ("glacial") acetic acid, $HC_2H_3O_2$

SUBSTANCE	Ka
HCI	very large
HC ₂ H ₃ O ₂	1.8×10 ⁻⁵
NH4 ⁺	5.6×10 ⁻¹⁰
H ₂ O	$K_{w} = 1 \times 10^{-14}$

(16)

Sample exam question

Winter 2004 section 51

10. (_/ 9 Marks) The ancient Romans added calcium sulfate to wine to clarify it (*i.e.*, to remove cloudiness). They didn't know it at the time, but this treatment also removed any dissolved lead in the wine. [Note: Roman water pipes were made of lead, and wealthy people drank from lead cups...]

a) What is the <u>maximum</u> concentration of dissolved lead (II) ions, in molarity, that might be present in wine to which excess calcium sulfate has been added? [K_{sp} PbSO₄ = 1.6×10^{-6} ; K_{sp} CaSO₄ = 6.1×10^{-5}]

a) Chronic exposure to lead is dangerous, particularly to children, because lead is a poison that builds up in the bloodstream. Even very low concentrations of lead in the blood (50 parts per billion, = 0.050 ppm) causes increased blood pressure; above 100 ppb, intelligence is affected, and coma or death can result above 800 ppb. Convert the concentration of Pb²⁺ ions in the wine from part (a) to parts per <u>billion</u>, ppb, and comment on whether or not you think the fall of the Roman Empire might have been related to lead poisoning.

(17)

Sample exam guestion

Fall 2004 section 52

10. (__/ **12 Marks**) You are working in a biology lab and are asked to prepare a pH 7.40 buffer that mimics human blood. You will use KH₂PO₄ and Na₂HPO₄. The K_a of H₂PO₄ is 6.3×10⁻⁸; the K_a of HPO₄²⁻ is 4.2×10⁻¹³.

a) (3 marks) Briefly explain why HPO_4^{2} and $H_2PO_4^{-}$ are a good pair of substances to use.

a) (3 marks) What should be the ratio of $[HPO_4^2] / [H_2PO_4^2]$ in this buffer?

a) (6 marks) To mimic blood, the buffer must exert an osmotic pressure of π = 8.00 atm at 37°C. Using this information, calculate the masses of KH₂PO₄ and Na₂HPO₄ you should use to prepare 1.0 L of buffer.