CHEM 206 section 01

corrected slide 5

LECTURE #3

Fri. Jan. 11, 2008

ASSIGNED READINGS:

LAST CLASS' NOTES: included 9.10...

TODAY'S CLASS: finish Ch.6...

NEXT CLASS: Ch. 19.1-19.5

Remember: Chem 101 seminars next week

(1)

6.7 Hess's law

(useful for any state function...)

The change in enthalpy (or any other state function) for a reaction is the same whether the reaction takes place in one step or via a series of steps.

"Hess's law"

Directly from DEFINITION of state function!

How might this be useful?

to be studied easily / safely...

If the reaction we WANT to study is too:
 fast / slow
 exothermic / endothermic

exothermic / endothermic toxic, expensive, *etc.*

...we can

a) look at data for other reactions involving the same compounds,

b) combine them in such a way that we OVERALL

- start with our desired REAGENTS and
 - end up with our desired PRODUCTS

(2)

Use Hess's law to predict ΔH_{rxn} for... a dangerous reaction: $C_2H_4(g) + 6F_2(g) \rightarrow 2CF_4(g) + 4HF(g)$ $H_2(g) + F_2(g) \rightarrow 2 HF(g) \qquad \Delta H^\circ = -537 \text{ kJ } (per 1mol H_2)$ $C(s) + 2 F_2(g) \rightarrow CF_4(g) \qquad \Delta H^\circ = -680 \text{ kJ } (per 1mol C)$ $2 C(s) + 2 H_2(g) \rightarrow C_2H_4(g) \qquad \Delta H^\circ = +52.3 \text{ kJ } (per 1mol C_2H_4)$

(3)

$$ANS: -2486 \, kJ \qquad (per \ 1 \ mol \ C_2H_4)$$

 $= -2.486 \times 10^3 \, kJ$

Using Hess's law to calculate ΔH for a rxn

- 1.) Find reactions involving all substances in reaction of interest.
- Arrange rxns: desired reactants on left & products on right. Scale up / down to get desired numbers of moles of each.
- **3.)** If a reaction is reversed, reverse the sign of its ΔH also.

$$\begin{array}{rl} 2 \ C({\bf s}) \ + \ 2 \ {\bf H}_2({\bf g}) \ \rightarrow \ C_2 {\bf H}_4({\bf g}) & \Delta {\cal H} = \ + 52.3 \ {\bf kJ} \\ C_2 {\bf H}_4({\bf g}) \ \rightarrow \ 2 \ C({\bf s}) \ + \ 2 \ {\bf H}_2({\bf g}) & \Delta {\cal H} = \ - 52.3 \ {\bf kJ} \end{array}$$

→ Maintains correct "point of view": endo- vs. exothermic

 If the coefficients of a reaction are multiplied by an integer, multiply its ΔH by that same integer.

$H_2(g) + F_2(g) \rightarrow 2 HF(g)$	∆H= -537 kJ
$2 H_2(g) + 2 F_2(g) \rightarrow 4 HF(g)$	∆ <i>H</i> = <mark>2</mark> ×(-537 kJ) = <mark>-1074 kJ</mark>

 \rightarrow Heat released depends on quantity of matter involved *(extensive)*

NOTE: finding rxns to use is easier than you might expect:

Formation rxns = COMPOUND formed by rxn of its constituent elements ΔH^{o}_{f} = "standard enthalpy of formation" of 1 mol of compound in its standard state at a given temperature

" ΔH_{f}^{o} " = ΔH for formation of compound from the elements... for species in their <u>STANDARD STATES</u>

** thermodynamic data (e.g., ΔH°_{f}) for elements & common compounds is listed in textbooks ! **

"STANDARD STATES": indicated by the ° "naught"

- Elements (NOTE: △H^o_f for elements in std. state = 0 by def'n)
 - = the form in which element exists at:
 - 1 atm pressure & specified temperature (usually 25°C)

$$e.g., N_2(g), K(s)$$

Compounds

- For a gas: P = 1 atm
- For a solution: concentration = 1 M
- For a liquid or solid: the <u>pure</u> liquid or solid

 ΔH°_{rxn} = heat released at const. P if have 100% conversion of (6) reactants in std. states to products in std. states

Table 6.2	Selected Standard Mol Formation at 298 K	ar Enthalpies of	See appendix for more substances
Substance	Name	Standard Molar En of Formation (kJ	thalpy /mol)
C(graphite)	graphite	0 ←	element's
C(diamond)	diamond	+1.8	most stable
CH ₄ (g)	methane	-74.87	allotrope:
$C_2H_6(g)$	ethane	-83.85	$\Lambda H^{\circ} = 0$
$C_3H_8(g)$	propane	-104.7	$\Delta m_{\rm f} = 0$
$C_4H_{10}(g)$	butane	-127.1	_
$C_2H_4(g)$	ethene (ethylene)	+52.47	
$CH_3OH(\ell)$	methanol	-238.4	-
$C_2H_5OH(\ell)$	ethanol	-277.0	
$C_{12}H_{22}O_{11}(s)$	sucrose	-2,221.2	
CO(g)	carbon monoxide	-110.53	
$CO_2(g)$	carbon dioxide	-393.51	
CaCO ₃ (s)*	calcium carbonate	-1207.6	
CaO(s)	calcium oxide	-635.0	
$H_2(g)$	hydrogen	0 ←	element
HCl(g)	hydrogen chloride	-92.31	∆H° _≠ = 0
HCl(aq)*	hydrochloric acid (1 M)	-167.2	

(7)

Real processes: must scale for quantity of reactants...

What quantity of heat is released when 10.0g of nitroglycerin is detonated at room temp. against constant atmospheric pressure?

 $4 C_3 H_5 N_3 O_9(s) \rightarrow 12 CO_2(g) + 6 N_2(g) + 10 H_2 O(g) + O_2(g)$ MM 227.1 g/mol

Substance	∆H° _f
	kJ/mol
Nitroglycerin (s)	-364
CO ₂ (g)	-393.5
Water vapour	-241.8

ANS: $\Delta H_{rxn}^{\circ} = -62.6 \text{ kJ}$ for the 10.0 grams (0.04404 mol...) = could warm ~200 mL of water $25 \rightarrow 100^{\circ}C$ (verify this...) VOLUME \uparrow ENORMOUS! \Rightarrow DESTRUCTIVE SHOCK WAVE !

6.9 Product- or reactant-favoured reactions and thermochemistry

- Exothermic reactions are OFTEN product-favoured
 Implies they proceed forward as written
- Endothermic reactions are OFTEN reactant-favoured
 Implies they don't proceed forward (or not much)
 - Implies they don't proceed forward (or not much)

...but predicting this involves <u>more</u> than only thinking about heat flow involved in reaction.

(and so we will study Ch.19...)

Thinking about the energy changes that occur during rxns & other processes will enable us to PREDICT if a rxn should proceed FORWARD on its own, or not at all, or BACKWARDS!

(9)

ASSIGNED READINGS:

BEFORE NEXT CLASS:

Read: rest of Ch.6

+ WORK ON Problems from Ch.6

Next class: Ch. 19.1-19.5