CHEM 206 section 01

LECTURE #4

Wed. Jan. 16, 2008

ASSIGNED READINGS:

TODAY'S CLASS: finish Ch.6... start Ch. 19.1-19.5

Remember: Chem 101 seminars this week

(1)

CHAPTER 19 Entropy & Free Energy

(we'll cover this in less detail than text: focus on lecture material)

For now: we'll cover these:

General comprehension:

- 19.1 Spontaneous change & equilibrium
- 19.2 Heat and spontaneity
- 19.3 Dispersal of energy & matter
- 19.4 Entropy & the 2nd law

In detail:

- 19.5 Entropy changes & spontaneity
- 19.6 Gibbs Free Energy

Chapter Goals:

- Understand the concept of entropy and how it relates to spontaneity
- Predict whether a process is product- or reactant favoured (proceeds forward vs. reverse)
- Use tables of data in thermodynamic calculations
- Define and use a new thermodynamic function: Free Energy

(3)

19.1–19.2 Spontaneous change leads to equilibrium, but is not dependent upon heat flow...

Spontaneous processes:

- occur without outside intervention
- net change of system stops once system reaches a state of equilibrium (more detail later...)
 - → e.g., heat flows from warmer object to colder... until objects both at same temperature

Exothermic processes are OFTEN spontaneous...BUT:

Thermoneutral (no heat flow) processes CAN be spontaneous: • gas flowing into an evacuated chamber...or leaking out of a balloon

Endothermic processes CAN be spontaneous:

- ice melts at T > 0°C, but not T < 0°C (but it's always endothermic!)
- NH₄Cl dissolves in water (but causes the water to cool down a lot...)

(4) Temperature seems important. WHY???

19.3 Dispersal of energy & matter (extra defail in 1
--

WHAT DRIVES CHEMICAL PROCESSES?

1.) dispersal of matter

→ increasing the randomness of the universe by breaking large particles into many smaller ones, OR by spreading matter out over larger volumes

2.) dispersal of energy

→ distributing energy over as many particles of matter as possible

via heat flow: transfer of kinetic energy between particles

A process WILL be spontaneous if: energy & matter *BOTH* dispersed A process MIGHT spontaneous if: energy *OR* matter is dispersed A process will NOT spontaneous if: *neither* E *NOR* matter is dispersed

(5) \rightarrow NOTICE: "dispersal" = creating disorder

19.4-19.5 Spontaneous Processes & Entropy

Entropy (S) = DISORDER Units: J/K

 \rightarrow A thermodynamic state function

→ A LITTLE UNUSUAL: Magnitude depends strongly on temperature

> MAKES SENSE WHEN YOU CONSIDER: particles moving faster at higher temp... mixing around with each other... \rightarrow MORE DISORDERED

⇒ Entropy itself is NOT a type of energy

however: if multiply entropy by temperature: i.e., SxT can think about how much energy is being spent on "making a mess"

(6)

Second Law of thermodynamics: "mess happens"

2nd LAW: In any spontaneous process, the total disorder of the <u>universe</u> (= system + surroundings) increases.

Mathematically: NET entropy increase... SPONTANEOUS IF: $\Delta S_{univ} = (\Delta S_{sys} + \Delta S_{surr}) > 0$

Another version of the 2nd law:

THE ENTROPY OF THE UNIVERSE IS INCREASING ...

Ominous: energy tends to be converted from useful forms (potential E we can harness to do work or generating heat where we need it) into heat in the surroundings (which corresponds to increased disorder...)

(8)

Sodium reacts with chlorine... $2Na(s) + Cl_2(g) \rightarrow NaCl(s)$ <u>Rationalize</u>: $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} > 0$ using: ① logic & ② calculations

(10) **Hess' law:** $\Delta S_{rxn}^{\circ} = \Sigma S_{f}^{\circ}(\text{products}) - \Sigma S_{f}^{\circ}(\text{reactants})$

B.) Now consider surroundings:

Section 19.5

is heat transferred to/from system?

So ... WHAT DRIVES CHEMICAL PROCESSES?

1.) increasing randomness of system... ENTROPY CHANGE OF SYSTEM

2.) increasing randomness of surroundings...
...by ↑ thermal motion
ENTHALPY CHANGE
if heat flows out of system
OF SYSTEM

Overall: will be able to determine net effect on universe. Process SPONTANEOUS if universe becomes more disordered.

(13)

The 2 nd Law governs spontaneity & reveals net "driving force"	
For a spontaneous process: (forward reaction occurs on its own)	∆S° _{univ} > 0
For a system at equilibrium: (no net change in either direction)	$\Delta S^{o}_{univ} = 0$
For a non-spontaneous process: (reverse reaction occurs on its own)	∆S° _{univ} < 0
The net driving force for a process is determined by:	
Two quantifiable state functions of the SYSTEM:1) ENTROPY: ΔS°_{sys} \Rightarrow matter dispersal in sys.2) ENTHALPY: $\Delta H^{\circ}_{sys} = -T\Delta S^{\circ}_{surr}$ \Rightarrow matter dispersal in surr.	
(14)and now: convert to the chemis	st's typical viewpoint

ASSIGNED READINGS:

BEFORE NEXT CLASS:

Read: rest of Ch.6, plus Ch.19 up to 19.5 + WORK ON Problems from Ch.6 & 19

Next class: Ch. 19.6, 19.8, start Ch.13.1-13.5...

(15)