CHEM 206 section 01

LECTURE #6

Wed. Jan.23, 2008

ASSIGNED READINGS:

TODAY'S CLASS: Ch.13.3-13.5

NEXT CLASS: finish Ch.13 to 13.5, start Ch.14...

(1)

CHAPTER 13 Intermolecular Forces & Liquids

For Chem206,

you are responsible for:

- 13.1 States of matter & the kinetic-molecular theory
- 13.2 Intermolecular forces
- 13.3 Hydrogen bonding
- 13.4 Summary...13.5 Properties of liquids

Chapter Goals:

- Describe intermolecular forces and their effects, and the importance of hydrogen bonding
- Understand the properties of liquids

To learn this: you **must** remember...

- electrostatic (ion-ion) attraction in ionic compounds
- how to use electronegativity to determine polarity of covalent bonds
- how to draw Lewis structures
- how to determine polarity of molecules

13.1 States of matter & the kinetic-molecular theory

- Particles (atoms, ions, molecules) of matter are in CONSTANT MOTION
- Kinetic energy proportional to temperature
- If forces between particles are weak:

 → particles' kinetic energy overcomes attractions
 ⇒ GASEOUS STATE
- If forces between particles are strong:
 → keeps particles closer together
 ...& their motion is limited

⇒ SOLID or LIQUID STATE

Must understand NATURE OF INTERACTIONS between particles to understand:

- melting points, boiling points...etc.
- solubility
- how biological molecules maintain shape/function

(3)

13.2 Intermolecular Forces = forces between molecules

MUCH WEAKER THAN <u>INTRA</u> MOLECULAR FORCES = forces <u>within</u> molecules = covalent bonds = STRONG

3 main types of INTERmolecular forces:

Also: dipole-ion interactions...

(4)

(5)

Recall: polarity can be quantified Table 9.8 by measuring interaction with electric field

Molecule (AB)	Moment (μ , D)	Molecule (AB ₂)	Moment (μ , D)	
HF ഗ	1.78	H ₂ 0	1.85	
нсі нсі	1.07	H ₂ S H	0.95	
HBr HBr	0.79	SO2 2 2	1.62	
HI IO	0.38	CO ₂	0	
H ₂	0			

Molecule (AB ₃)		Moment (μ , D)	Molecule (AB ₄)	Moment (μ , D)
NH ₃	- Fa	1.47	CH4	0
NF ₃	Z L Z	0.23	CH3CI A	1.92
BF ₃	PLAN PLAN	0	CH2Cl2	1.60
PYRA PYRA or PL	Щ М М М М М М М М М М М М М М М М М М М		CHCl3	1.04
			CCL	0
(6)				

Dipole / induced-dipole interactions K&T Fig. 13.6

- relatively weak forces between POLAR & NONPOLAR molecules
- involve interaction between permanent dipoles &

transiently induced dipoles

How oxygen can dissolve in water:

(7)

London Dispersion Forces (or "van der Waals forces") = induced-dipole / induced-dipole interactions

- weakest intermolecular forces, involving transient dipoles
- occur between molecules of ALL substances, but most important for nonpolar molecules (since no other forces)

13.3 Hydrogen bo	onding:	Х—Н	:Y where X&Y = N,O,F			
Hydrogen bonds are strong intermolecular forces (10-40 kJ/mol)						
BUT: <u>much</u> weaker than ion-ion interactions (100's of kJ/mol) and covalent bonds! (100's of kJ/mol)						
Extremely polar bond be electronegative atom "X X = "hydrogen bond dond	"&Н	≺−− ∀−− ⊢ <mark>}⁻ δ⁺ δ⁻</mark>	Dashed line denotes a "hydrogen bond" Y = "H bond acceptor"			
These X-H bonds are sufficiently polar to yield H-bonds ():						
N—H	0—F	1:N	F—H			
N—H:0	0—F	ł::0	F—H:0			
N—H;F	0—H	{	FH:F			
NOTE: research still ongoing to fully understand hydrogen bonding H-bonds have mostly electrostatic character (dipole-dipole $\delta^{+}H \leftrightarrow \delta^{-}Y$), but some covalent character too (<i>i.e.</i> , orbital overlap H 1s \leftrightarrow Y 2s ^m p ⁿ) \Rightarrow HOWEVER, they are NOT full bonds, just <i>interactions</i>						

(10)

Hydrogen bonds are strong intermolecular forces (10-40 kJ/mol) ...stronger than "regular" dipole-dipole interactions... BUT: <u>much</u> weaker than ion-ion interactions (100's of kJ/mol) and covalent bonds! (100's of kJ/mol)

WHY ARE HYDROGEN BONDS SUCH STRONG INTERACTIONS? \Rightarrow CAUSE: larger-than-usual partial charge δ^{+} on H due to large electronegativity differences in: H—F H—OR H—NR₂

 EFFECT: strong interaction (electrostatic AND orbital overlap) to small, δ⁻, lone-pair bearing atoms (F, O or N only)

For your interest only: The net "cohesive" effect of hundreds of H-bonds is what holds DNA & proteins in their correct shapes! see "A Closer Look" p.520 K&T 5th Ed.

(12)

ASSIGNED READINGS:

BEFORE NEXT CLASS:

Read: Ch.13.1-13.5

+ WORK ON problems

Review: molarity (Ch.5), mass % (Ch.1 & 3)

Next class: Ch.14...

(13)