ORGANIC CHEMISTRY ICHEM 221 section 52LECTURE #01Thurs., Jan.3, 2008

Our textbook: P.Y. Bruice, Organic Chemistry, 5th Ed.

Also helpful: D. Klein, Organic Chemistry as a 2nd language

ASSIGNED READINGS:

TODAY'S CLASS: Bruice Ch1: 1.1-1.15

NEXT CLASS: rest of Ch.1, part of Ch.7 & start Ch.2

(1)

What is organic chemistry?

History:

- Jöns Jakob Berzelius (1807): "Organic compounds" come from living organisms; "inorganic compounds" = minerals
- Friedrich Wöhler (1828): made urea in the laboratory, starting from inorganic compounds

What do organic chemists do?

- Study relationship between structures of molecules & their properties and reactions
- Synthesize molecules with desired characteristics: pharmaceuticals, flavourings, pigments, plastics, fabrics...

Why do you need to study organic chemistry?

- To learn how organic matter reacts, and WHY
- To provide a basis for understanding biological processes
- To gain spatial and temporal organizational skills
- To practice thinking logically & solving complex problems
- To learn to recognize trends & extrapolate knowledge to unknowns...

The big picture: what we're doing & why...

LEARNING ORGANIC REACTIONS WILL HELP US UNDERSTAND:

how biological molecules perform their functions

- → intermolecular interactions, enzyme-catalyzed reactions
- → biochemical pathways: respiration, photosynthesis, etc...
- how biomolecules are synthesized in nature

(4)

- how synthetic molecules can be made to mimic natural molecules
- how synthetic molecules can be made to perform novel functions
 → plastics, dyes, paints, cosmetics, medicines...

There are strong relationships between structure & function ...but it will take more courses to learn all this!

Here: we will learn BASIC TYPES OF ORGANIC REACTIONS • acid-base reactions:

- \rightarrow pH affects how molecules look: cationic, neutral, anionic
- \rightarrow deprotonating lets us prepare "building blocks" (nucleophiles!)
- & more complex reaction types: substitution, elimination, addition...
 → will allow us to "build" molecules of interest
 - → the more rxns we understand, the more routes we can take!

How to study organic chemistry

• Like a language: PRACTICE, & DON'T GET BEHIND.

Verbal communication

TRAIN YOUR MIND: Read the textbook Learn proper vocabulary Practice writing explanations Practice solving problems

TRAIN YOUR MOUTH: Discuss material with peers

Solve problems together Practice explaining verbally

Pictorial communication

TRAIN YOUR EYE: Interpret chemical drawings See 3D shapes in flat drawings

TRAIN YOUR HAND: Practice drawing in 3D Practice writing structures Write problems out every time

- Learning the general trends and rules will help you minimize memorization & maximize comprehension.
 - Too much to try to memorize all!
 - Most successful approach = practice.
 - Study Guide: use as a tool, not as a crutch.

Chapter 1: Introduction to Organic Chemistry

Chapter Goals

(5)

- Review general chemistry principles: structure, bonding
- Expand knowledge & apply to organic compounds
- Review acid/base chemistry
- Expand to understand organic compounds as acids/bases

<u>Chapter Outline</u>: This week (not necessarily in this order)

- 1.1-1.2 Atomic structure, e⁻ distribution
- 1.3-1.4 Types of bonds & representing structures
- 1.5-1.6 Atomic orbitals & molecular orbital theory
- 1.7-1.9 Bonding: single, double, triple bonds
- 1.10 Bonding in cations, anions, radicals
- 1.11-1.13 Bonding in simple compounds
- 1.14 Summary: Bond lengths, strengths & angles
- 1.15 Dipole moments of molecules
- (6)

Н 2.1			Fla	ectr	one	200.	tivi	tv								
Li 1.0	Be 1.5			tz &		-		•	9.9			В 2.0	C 2.5	N 3.0	0 3.5	F 4.0
Na 0.9	Mg 1.2											Al 1.5	Si 1.8	Р 2.1	S 2.5	Cl 3.0
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5

Organic Chemistry: the chemistry of carbon

Characteristics of Carbon:

- Does not readily give up or accept e⁻s (e⁻s = electrons) WHY?
 - Intermediate electronegativity
 - effective nuclear charge too low to steal e-s
 - effective nuclear charge too high to give away e-s
- 2. Does readily share e-s (i.e., forms covalent bonds)

with other C atoms & other non-metal atoms

1.3: REVIEW: Ionic, Covalent & Polar Bonds

Ionic compounds:

(7)

- form when an electropositive element (low electronegativity) transfers electron(s) to an electronegative element
- usually involve metals & nonmetals
- ionic bonds = electrostatic attractions between ions of opposite charge

Covalent bonding: atoms' valence shells overlap

Covalent bonding: valence e⁻s attracted to 2 nuclei at once e⁻s occupy valence shells of both atoms

Bond strength described by bond dissociation energy

- = energy required to break a bond (always endothermic!)
- = energy released when a bond forms (always exothermic!)

1.2: The distribution of e⁻s in free atoms

 Orbital = volume of space around the nucleus where an electron of a given energy is most likely to be found

1.6 Molecular Orbital ("M.O.") Theory A model to explain covalent bonding

• a σ-bond: can be formed by the overlap of two s orbitals:

(11) [Note: Gen. Chem. texts also helpful - Kotz & Treichel 10.3; Zumdahl 9.2-5]

Remember that orbitals are WAVES...

Like waves: orbitals have *phase* & *interfere* if overlapped

(12)

In-phase overlap forms a bonding MO Out-of-phase overlap forms an antibonding MO

Important: BOTH types of overlap occur every time 2 orbitals overlap!

IMPORTANT: Bonding occurs if it is energetically favourable.

(13) If a bond's σ AND σ^* orbital are simultaneously filled: the bond will not exist. So, why not He₂?

A sigma bond can also be formed by end-on overlap of two p orbitals: (or any other 2 orbitals, same or not...)

⇒ the bond can rotate without diminishing the overlap

(14)

Orbital description of the bonding in Methane, CH_4

Each σ-bond formed by one C sp³ hybrid overlapping with one H 1s orbital

Summary: 4 σ-bonds produced by C 2sp³ - H 1s overlap

Valence Bond view (easier to see) of the BONDING σ-orbitals ...but reality is MO

(16)

Similar diagrams result for: C-E bonds (E = O, N, halogen)

A simple organic reaction: $CH_3I + F^- \rightarrow CH_3F + I^-$

Draw the orbitals involved in the C-H & C-I bonds of methyl iodide *(both bonding & antibonding):*

What would happen if a lone pair on F- entered the C-I σ^{\star} orbital?

IF MIX THESE	GET BACK THESE	ANGLE b/w	GEOMETRY
ATOMIC ORBITALS	HYBRID ORBITALS	HYBRIDS	
One s & one p	2 " sp " hybrids	180°	Linear
One s & two p's	3 " sp ²" hybrids	120°	Trig. planaı
One s & three p's	4 " sp ³" hybrids	109.5°	Tetrahedra

1.8 Bonding in Ethene: A Double Bond $(=1\sigma+1\pi)$

A pi bond (π) is formed by side-on overlap of 2 p orbitals:

→ i.e., higher e⁻ density in region of overlap

(20)

(21)

1.9 Bonding in Ethyne: A Triple Bond $(=1\sigma+2\pi)$

1.8 Bonding in Ethene: A Double Bond $(=1\sigma+1\pi)$

1.14 Summary of important bonding principles

Molecule	Hybridization of carbon	Bond angles	Length of C-C bond (Å)		bond	Length of C—H bond (Å)		gth of I bond (kJ/mol)
H H H-C-C-H H H H H ethane	sp ³	109.5°	1.54	sp ³ -sp ³	377	1.10	sp ³ -s	423
H C=C H ethene	sp ²	120°	1.33	sp ² -sp ² & p-p	720	1.08	sp²-s	466
etnene H-C=C-H ethyne	sp	180°	1.20	sp-sp & 2x p-p	967	1.06	sp-s	548

- 1.) Higher bond order \rightarrow stronger bond (for same atom types)
- 2.) The greater the "s-character", the stronger the bond. WHY?
 - \rightarrow s-orbitals are closer to nucleus than p's (or hybrids)
 - \rightarrow thus: stronger nucleus-to-electron attraction

(23)

Summary: important bonding principles

- When a bonding / antibonding orbital pair are filled, the bond will break (or never form)
- A π bond is weaker than a σ bond
 - double bond = $1\sigma + 1\pi$
 - triple bond = $1\sigma + 2\pi$
- The greater the electron density in the region of orbital overlap, the stronger is the bond
- The more *s* character:

the shorter and stronger is the bond

1.4 REVIEW & BEYOND: Representation of structure

• Lewis structures: include <u>all</u> valence electrons

bonding e-s: as pair of dots *OR* as a line

nonbonding e-s: as a pair of dots *(lone pairs)*

Lewis structures

Full dot	:ё	;ё	;ё	:ö:	:NIIN:
structures	н:с:ё:н	н:ё:й:ё:-	н:С:н	-:ö:::ö:-	
Simplified structures					

Important points to remember:

- add up all valence e^{-s} & make bonds to satisfy valences
- Ieft-over e-s left as lone pairs on atoms with higher electronegativity
- make multiple bonds to try to minimize formal charges on atoms
- 1st row elements: MUST obey duet rule
- 2nd row elements: MUST obey octet rule
- 3rd row & below: can exceed octet
- Formal charge = # valence ers [# lone pair ers + $\frac{1}{2}$ (# bonding ers)]

Typical ways to draw organic structures

- Kekulé structures: show all bonds but not lone pairs
- Condensed structures: formulas that show connectivity

Table 1.5	Kekulé and Co	ndensed Structures
Kekulé s	structure	Condensed struct

н

Condensed structures

Two or more identical groups considered bonded to the first atom on the left can be shown (in parentheses) to the left of that atom, or hanging from the atom.

$$\begin{array}{ccccccccccccccccccccccc} H & H & H & H & H \\ H & -C & -N & -C & -C & -C & -H \\ H & -C & -H & H & H & H \\ H & -C & -H & H & H & H \\ H & -C & -H & H & H & H \\ H & -C & -H & H & H & H \end{array}$$
 (CH₃)₂NCH₂CH₂CH₃ or CH₃NCH₂CH₂CH₃

An oxygen doubly bonded to a carbon can be shown hanging off the carbon or to the right of the carbon.

REVIEW: Covalent bonding - equal vs. unequal sharing...

- Nonpolar covalent bonds: equal sharing of valence electrons by atoms of equal electronegativity e.g., H₂
- Polar covalent bonds: unequal sharing of valence e⁻s between atoms with different electronegativities *e.g.,* HF

Larger difference? → more polar

Important: know <u>relative</u> electronegativities of nonmetals **COMMON ONES:** F > O > N, Cl > Br > I, S, C > H

Polar bonds have a "Dipole moment"

A polar bond has a negative end and a positive end
 → due to unequal distribution of electrons

Table 1.4		
The Dipo	le Moments of Some	dipole moment = µ = <i>e</i> × <i>d</i>
Commonl	y Encountered Bonds	In units called Debyes, "D"
Bond	Dipole moment (D)	e: magnitude of the charge on the atom
н-с	0.4	
H-N	1.3	d: distance between the two charges
Н-О	1.5	
H-F	1.7	Note:
H-Cl	1.1	 These dipole moments are averages
H—Br	0.8	of experimental measured dipoles
н—і	0.4	 Using electronegativity differences
С-С	0	to predict polarity works fairly
C—N	0.2	well, but is not perfect
С-О	0.7	weir, but is not perfect
C-F	1.6	
C-Cl	1.5	 Suggestion: become familiar with
C-Br	1.4	the relative polarities shown here
C-I	1.2	merelanve polarnes shown here

Visualizing electron distribution in molecules: Electrostatic Potential Maps

Why is it useful to picture polarity?

- Electron-rich atoms or molecules are attracted to electron-deficient atoms or molecules
 - ⇒ can predict physical & chemical properties!

(34)

1.13 Bonding in the hydrogen halides

	Bond length	Bond s	trength
Hydrogen halide	(Å)	kcal/mol	kJ/mo
H-F B	0.917	136	571
H—CI II	1.2746	103	432
H—Br H	1.4145	87	366
H-I HB	1.6090	71	298

- H-X bonds involve H 1s X np overlap
- larger value of "n" \rightarrow larger orbital (higher energy)

SO WHAT?

HF

HCI

HBr

HI

- $\hfill mismatch$ in orbital sizes results in less efficient overlap \rightarrow weaker bond
 - \rightarrow reflected in bond energy & bond length
- bond strength: measured via BOND DISSOCIATION ENERGY
 = E required to homolytically cleave bond to yield 2 radicals (more stable radicals are easier to form → lower BDE)
- (36) bond length: shorter bonds are not necessarily stronger...

ASSIGNED READINGS

BEFORE NEXT LECTURE:

Read: Bruice Ch.1 up to section 1.15

Work on: Ch.1 #68-72,75-78,80,83,85-86,90,93,97

Revi		vis structures & resonance ecular geometry & polarity
	Chem206: acio - c - p - r	ls & bases (concepts, not math) onjugate pairs H, pK _a , pK _b (concepts!) eactions of acids & bases ffect of structure on acidity
		ital figures were taken from

(37)

Kotz & Treichel's *Chemistry & Chemical Reactivity* 5th Ed. On reserve at Vanier library for Chem 205/206