CHEM 221 section 52

LECTURE #02

Thurs., Jan.10, 2008

ASSIGNED READINGS:

TODAY'S CLASS: not in same order as text

Molecular dipole moments		
Review of Lewis acid-base theory		
Review of Brønsted-Lowry acids & bases		
Organic acids & bases: pK, & pH		
Effect of structure on pK		
Introduction to delocalized electrons & resonance		
Understanding & drawing resonance structures		
How delocalized electrons affect pK_{α}		

(1) NEXT CLASS: Ch.2

1.15 Review: Dipole Moment of Molecules

The vector sum of magnitude and direction of individual bond dipole determines overall dipole moment of a molecule

Judging polarity of organic molecules

- 1. Consider lone pairs as contributing δ^- character
- 2. Treat C-H bonds as if they were totally nonpolar (even though $\Delta \chi = 0.4$ and D = 0.4)

WHY?

- Molecules are flexible:
 - → Free rotation occurs about single bonds
 - → Exist in many different "conformations"
- THUS: on average... small regional dipoles caused by C-H bonds end up canceling out over whole molecule !

Identify the polar *vs.* nonpolar character of...

(label ∂ / ∂ in **net polar regions** of molecules only)

Draw intuitively helpful structures, with polarity:

 $(CH_3)_3CCH(OH)CH_3$

 $CH_3N(CH_3)_2$

CH₃(CH₂)₁₄COOH

(4)

(3)

1.21 The Lewis concept of acids & bases

- A general, MECHANISTIC, way of thinking
- Explains H⁺ transfer reactions (Brønsted-Lowry theory) & many others

A LEWIS BASE = an electron pair donor anything with "have pair, will share" a lone pair!

AND WHEN THEY REACT:

Lewis base shares its lone pair of e-s with Lewis acid

- \rightarrow A new covalent bond is formed
- Sometimes called a "coordinate covalent bond" to denote that the pair of es were both provided by the same atom

IMPORTANT: Lewis acid-base ($\delta^+ - \delta^-$) interactions let you predict the outcome of nearly all reactions!

 \rightarrow can enhance or entirely change the molecule's reactivity \rightarrow see more soon (Ch.4)...

1.16-1.17: Brønsted-Lowry Acids and Bases

Measuring acid strength: $K_a \& pK_a$

 $HA + H_2O \implies A^- + H_3O^+$ where HA = any acid, & $A^- = its conj$. base

Acid dissociation constant = $K_a = \frac{[A^-][H_3O^+]}{[I]A^-]}$ Chemists use pK_a in two ways: 1.) To see inherent acidity of compound i.e., strength: $pK_{a} = -\log(K)$ Lower $pK_a \Rightarrow$ stronger acid (weaker conj.B) Higher $pK_a \Rightarrow$ weaker acid (stronger conj.B) 2.) To identify protonation state of a **IMPORTANT:** compound in solution, *i.e.*, speciation: • pH describes a solution A compound will exist primarily in its: (how much H_3O^+ is present?) acidic form at a pH < its p K_{α} • pK_a describes a compound (how good is it at losing an H*?) basic form at a pH \rightarrow its p K_a

The stronger an acid is, the weaker its conjugate base.

(8)

Acidity & basicity: depend on STRUCTURE

Table 1.8: Approximate pK_a values (see text's back cover for more)

STRONG ACIDS	MODERATELY STRONG	← WEAK	ACIDS →	EXTREMELY WEAK
р <i>К</i> а < 0	р <i>К</i> а ~ 5	р <i>К</i> а ~ 10	р <i>К</i> _а ~ 15	р <i>К</i> а » 15
H ₃ 0 [⊕] protonated water			H ₂ O water	TO USE CONJ. BASE OF THESE:
⊕ ROH₂ a protonated alcohol			ROH an alcohol	"DRY" SOLVENT REQUIRED
*OH II R OH a protonated carboxylic acid	O II R OH a carboxylic acid	⊕ RNH ₃ a protonated amine		RNH ₂ an amine RCH ₃ an alkane

Note: "R" is short for any unidentified carbon-based group *e.g.*, CH₃, CH₃CH₂, *etc*...

Acidity & basicity: depend on STRUCTURE

- The stronger the base, the weaker is its conjugate acid (if it's so good at bonding to H*, then it's harder for it to let go...)
- A base deprotonates an acid by forming a covalent bond to H⁺ 1s orbital
 - BOTH es for the bond come from B:
 - Thus: a base will be *stronger* if it REALLY *needs to share* its es a base will be weaker if it is quite stable carrying its es

What factors decrease basicity? (more stable ⇒ less basic)

- 1.) Diminished electron density Lone pairs on smaller atoms are
 - Ione pair on large atom *more basic...*
 - due to inductive effects (e-withdrawing groups)
 - due to resonance (delocalization of electrons)
- To compare lone pairs on same type of atom, consider these,
- 2.) Diminished ability to <u>share</u> electrons
 - lone pair on highly electronegative atom

Consider this when lone pairs are on atoms of similar size (same row).

(10)

(9)

When comparing / predicting acid strengths:
1.) consider their conjugate bases
2.) compare atom carrying lone pair (= atom with bond to H in acid) 1st: consider SIZE

 When atoms are very different in size, the stronger acid will have its proton attached to the largest atom

(12)

When comparing / predicting acid strengths:

 consider their conjugate bases
 compare atom carrying lone pair (= atom with bond to H in acid)
 1st: consider SIZE
 2nd: if sizes similar → compare ELECTRONEGATIVITY

 When atoms are similar in size, the stronger acid will have its H⁺ attached to the more electronegative atom

CH ₃ OH	CH ₃ NH ₂
methanol	methylamine
p <i>K</i> _a = 15.5	р <i>К</i> _а = 40

(13)

When comparing / predicting acid strengths:
1.) consider their conjugate bases
2.) compare atom carrying lone pair (= atom with bond to H in acid)
1st: consider SIZE
2nd: if sizes similar → compare ELECTRONEGATIVITY
3rd: if same element → compare rest of molecule (EWGs)

Inductive electron withdrawal increases the acidity of an acid
(by stabilizing the conjugate base)

0	0	0	0	0
CH_3COH	ICH ₂ COH	BrCH ₂ COH	CICH ₂ COH	FCH ₂ COH
$pK_a = 4.76$	$pK_a = 3.15$	p <i>K</i> _a = 2.86	p <i>K</i> _a = 2.81	pK _a = 2.66

When comparing / predicting acid strengths:

- 1.) consider their conjugate bases
- 2.) compare atom carrying lone pair (= atom with bond to H in acid) 1st: consider SIZE
 - 2nd: if sizes similar \rightarrow compare ELECTRONEGATIVITY
 - 3rd: if same element \rightarrow compare rest of molecule (EWGs)
 - 4^{th} : \rightarrow compare degree of resonance stabilization

Draw structures for these 2 conjugate bases:

(15) What does acetate REALLY look like?

Identify the most acidic hydrogen in...

Polyprotic acids (review Chem 206...)

- the most acidic H on <u>each</u> molecule is lost before any molecule loses its next-acidic H
- THUS: if we add "1 equivalent" of base, only the most acidic H is lost

(16)

Predicting if an acid-base rxn will occur...

To efficiently deprotonate another molecule: the attacking base (B:) must be stronger than the other molecule's conjugate base...

How to analyze a potential A/B reaction:

- 1. Identify which is more basic (BASE) & which is more acidic (ACID)
- Identify the corresponding conjugate species
- 3. Compare strengths of the 2 bases: BASE, & ACID's conj. base
 - look up pK_a 's of the acids \Rightarrow think about conj. bases
 - the stronger base = better at accepting H⁺
 - at equilibrium: stronger base preferentially carries the H⁺

Resonance-stabilized anions = rather weak bases.

Why? What does resonance "do", anyway?

Understanding resonance (7.2-7.5)

Resonance contributors are imaginary, but the resonance hybrid is **real**

In reality = a hybrid • The π-bonding e⁻s & the lone pair are **delocalized** between the C & <u>both</u> O's

Eachline = 2 e-s here

WHAT IS GOING ON?

Localized Versus Delocalized Electrons

Benzene: the prototypical example of resonance

- A planar molecule with "alternating" single & double bonds
- All carbon atoms are sp² hybridized ⇒ all p-orbitals actually overlap!
- From experiment: all 6 C-C bond distances are same between single & double bond (B.O. = 1.5)
- The 6 p-electrons are delocalized: each p-electron shared by every C

How much stabilization does resonance provide?

Chemical significance of resonance:

1) Resonance-stabilized anions = rather weak bases. Why?

Remember the mechanism of deprotonation:

See 7.10

- a base attacks a δ⁺ H using its lone pair
 to form a bond: pair of e⁻s must localize between two atoms
- a delocalized lone pair must be "rounded up" into one orbital first!
- In terms of energetics: delocalized es are stabilized
 - \rightarrow lower in energy than if localized \rightarrow less driving force for reaction

(26)

Rules for Drawing Resonance Contributors: Part 1

- 1. The molecule's σ -framework stays the same: atoms do not move, & their σ -bonds don't change.
- 2. Only π -electrons and lone-pair electrons move.
- 3. The total number of e^{-s} in the molecule does not change.
- 4. The numbers of paired e-s and unpaired e-s do not change.
- 5. The total charge on the molecule does not change.

Remember why the e⁻s move: being delocalized via overlapping p-orbitals

Larger # resonance structures (resonance contributors) ⇒ more extensive delocalization ⇒ greater stabilization

(27)

Draw resonance structures (if appropriate!)

If the atom carrying lone pair were to **rehybridize** so it had an unhybridized p-orbital, could delocalization then occur? (If so, it will.)

Note: "push arrows" (1→ = 2e⁻) to indicate path e⁻s must "travel" to make transitions between your localized resonance structures
 (28) Which of these will be the stronger base?

Rules for Drawing Resonance Contributors: Part 2

The electrons can be moved in one of the following ways:

- 1. Move πe^{-s} toward a positive charge or toward a π bond
- 2. Move lone-pair electrons toward a π bond
- 3. Move a single nonbonding electron toward a π bond

WHY? • e⁻s move towards an atom with a p-orbital \Rightarrow sp or sp²-hyb.

Atoms with a lone pair are often sp³-hybridized. How can they participate in resonance???

- Remember: p-p (π -type) overlap is energetically favourable
- Thus: atom can actually change to sp²-hybridization
 - the e⁻ repulsion that normally forces it to go sp³ will be

(29) compensated for by the stabilization provided by the π overlap

Resonance contributors can be obtained by moving π e⁻s toward an open-valence atom: e.g., C+ (an sp²-atom!)

$$CH_{3}CH = CH - CHCH_{3} \iff CH_{3}CH = CH - CHCH_{3}$$

$$CH_{3}CH = CH - CHCH_{3}$$

$$CH_{3}CH = CH - CHCH_{3}$$

$$resonance hybrid$$

Similarly...

$$CH_{3}CH = CH - CH = CH - CH_{2} \iff$$

$$\delta^{+} \qquad \delta^{+} \qquad \delta^{+} \qquad \delta^{+}$$

$$CH_{2}CH = -CH - --CH - --CH_{2}$$

resonance hybrid

(30) More resonance contributors ⇒ more stable resonance hybrid

Resonance contributors can also be obtained by...

....moving π -electrons toward a π -bond (an sp² atom!):

Do all resonance structures contribute equally?

How do we know how many contributors to draw?

draw as many as the preceeding "rules" allow

Will they all contribute the same to the resonance hybrid?

■ more stable ⇒ contribute more

Features that decrease the stability (= importance) of a contributing resonance structure:

- 1. An atom with an incomplete octet ("open shell")
- 2. Formal charge & polarity mismatched
 - a) A negative charge on the more electropositive atom
 - b) A positive charge on the more electronegative atom
- 3. Charge separation


```
(33)
```

What would the resonance hybrid be like?

Remember: most alcohols have $pK_a \sim 15$ (do not act as acids in water) but phenol loses H⁺ when dissolved in water!

Phenol is <u>not</u> very basic: lone pair on O, but also somewhat delocalized ("brought into the ring" via resonance)

Small but significant contribution (charge separation)

(no sp^2 C's \Rightarrow no p orbitals)

(35)

ASSIGNED READINGS

BEFORE NEXT LECTURE:

Read: rest of Ch.1 Ch.7: 7.2-7.5, 7.10

Practice: Lewis structures, resonance structures Acids & bases

- conjugate pairs
- pH, pK_a , pK_b (concepts!)
- reactions of acids & bases
- effect of structure on acidity

(36)

