CHEM 221 section 52

LECTURE #04

Thurs., Jan.24, 2008

ASSIGNED READINGS:

TODAY'S CLASS: Ch.2

2.1-2.7	Naming organic compounds
2.8-2.9	Relating physical properties & structure

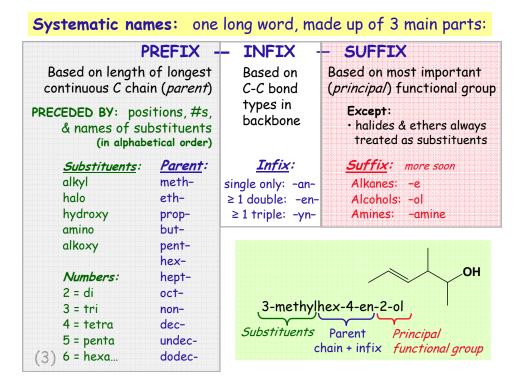
2.10-2.14 Molecular flexibility: conformations of alkanes

NEXT CLASS: finish Ch.2, start Ch.3

(1)

Naming organic compounds: NOMENCLATURE

Two systems of nomenclature:


1. Common names

- Historical
- Not necessarily based on structure
- Too many to memorize for all known compounds...but...
- Still in use for common compounds
 - on chemical bottles...
 - need to know motifs: normal, iso, neo

2. Systematic names (IUPAC)

- Unambiguous names
- Based on structure
 - Length of carbon chain
 - Bonding in chain
 - Positions of substituents
 - etc.
- Once you learn the rules, you can figure out names as required (less memorizing)
- First: learn alkyl groups & functional groups

Important: A compound can have more than one name, but a name must specify <u>only</u> one compound

Some nit-picky details about names

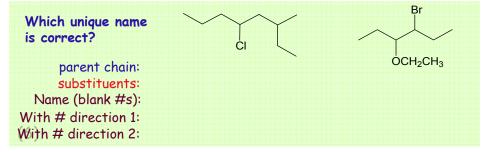
- Substituents are always listed in alphabetical order (by name)
 - prefixes that indicate HOW MANY are <u>not</u> used in alphabetization di, tri, tetra...
 - prefixes that DESCRIBE substituent <u>are</u> used in alphabetization cyclo, iso, neo --- except: sec & tert ...don't know why!

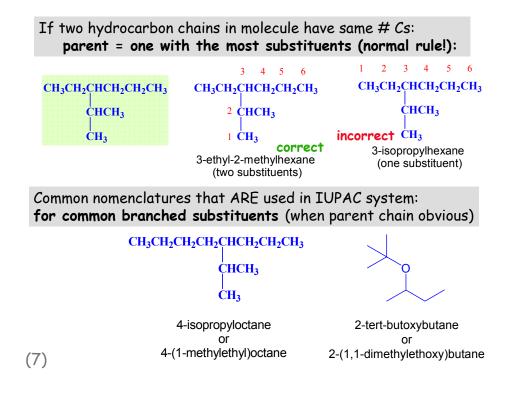
Numbers are used only in systematic names, not in common names

• Hyphens vs commas: number & word ⇒ separated by hyphen number & number ⇒ separated by a comma

2,2-dimethylpropane

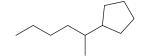
•A branched substituent is best named systematically, in parentheses with point of attachment to parent chain labeled as C-1 of the substituent

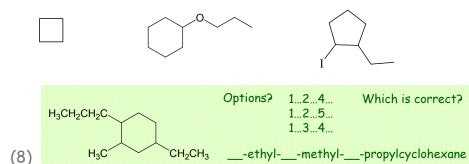

> 5-(2-methylpropyl)nonane vs. 5-isobutylnonane

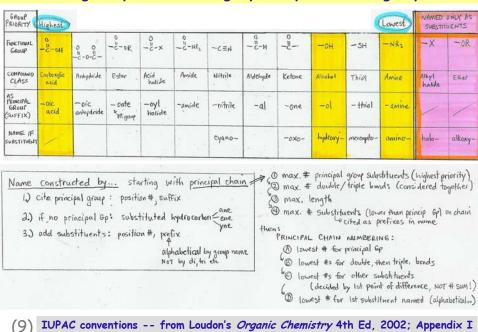

(4)

Class	Example	Common name	Systematic name
& text section	Draw line structures		Best approach - always unique.
Alkyl halides (2.4)	CH ₃ CHFCH ₂ CH ₂ CH ₃	Alkyl group + halide sec-pentyl fluoride ? (Bad - not unique!)	Halo-substituted alkane
Ethers (2.5)	CH ₃ OCH ₂ CH ₃	<i>Alkyl</i> groups + <i>ether</i> ethyl methyl ether	Alkoxy-substituted alkane
Alcohols (2.6)	(CH₃)₃COH	<i>Alkyl</i> group + alcohol t-butanol	Suffix = <i>-ol</i>
Amines (2.7)	CH ₃ CH ₂ CH ₂ NHCH ₃	<i>Alkyl</i> groups + <i>amine</i> methylpropylamine	Suffix = <i>-amine</i> N-methylpropanamine

2.2-2.5 Naming alkanes & substituted hydrocarbons


- Find parent chain: longest continuous chain of Cs containing...
 - max. # of principal Funct'l Gp substituents
 - max. # of double/triple bonds
 - max. length
 - max. # substituents (lower priority than principal gp)
- # Cs in direction that gives substituents lowest position #s
 (*i.e.*, substituents are closest to the "start" of the parent chain)
 - lowest position # for principal Funct'l Gp subs
 - lowest position # for double, then triple, bonds
 - lowest position # for non-principal substituents
 - if same #s in each direction: lowest # for 1st substit. in name


2.3 Naming cyclic organic compounds

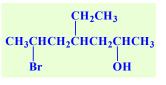

1. If ring = substituent (ring NOT longest chain): cycloalkyl-

2-cyclopentylhexane

- 2. If ring = parent: add cyclo immediately before parent chain's name
 - with 1 substituent: position # 1 implied (omitted)
 - with 2 substituents: 1st in alpha. gets lower # (same #s each direction...)
 - ≥ 3 substituents: choose C-1 to minimize other #s

Naming compounds with high-priority functional groups...

2.6 Nomenclature of Alcohols "-OL"

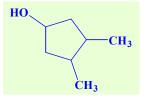

PRINCIPAL FUNCTIONAL GROUP determines:

(i) which is parent chain

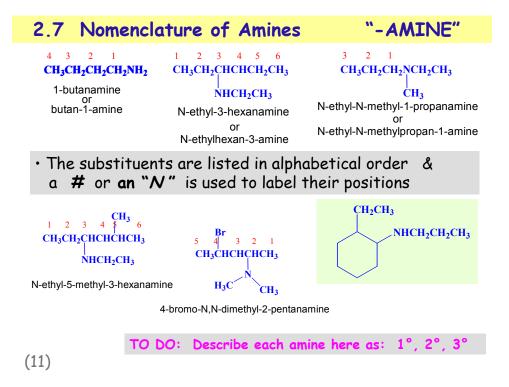
(ii) where #ing starts (at end closest to it)

Position # for PRINCIPAL FUNCT'L GP can appear either:

- (i) before "-ol" suffix or
- (ii) before parent chain name



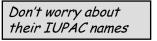
CH₃CH₂CH₂CH₂CH₂OCH₂CH₂CH₂OH

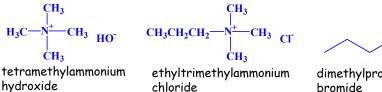

3-butoxypropanol

OR 3-butoxy-1-propanol OR 3-butoxypropan-1-ol

4,4-dimethyl-2-pentanol *OR* 4,4-dimethylpentan-2-ol

(10)




Naming Quaternary Ammonium Salts

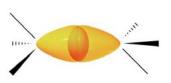
Ionic compounds: name cation first, then name anion

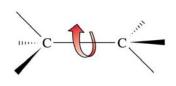
Common names:

- 1. Name all substituents on the nitrogen
- 2. Use suffix "-ammonium"
- 3. Name the counterion

N Br[−]

dimethylpropylammonium bromide


We'll see how alkylammonium salts can form later... but we DO know that amines can be protonated (act as base!)


(12)

Drawing molecules based on their names

(13)

2.10 Conformations of Alkanes: rotation about carbon-carbon bonds

For any σ -bond:

Overlap of end-on overlapping orbitals is not diminished by rotation about the internuclear axis

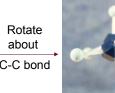
- ⇒ rotation about a single bond does NOT break the bond
- ⇒ the energy barrier to rotation is quite small

At room temperature: single bonds rotate freely!

Conformations: different 3D arrangements of atoms in molecule **due to rotation around single bonds**

 different confo's = rotational isomers conformational isomers "conformers"

For ethane:

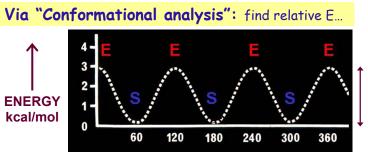

ECLIPSED

all C-H bonds lined up:

bonding e-s repel each other

maximum energy conformation

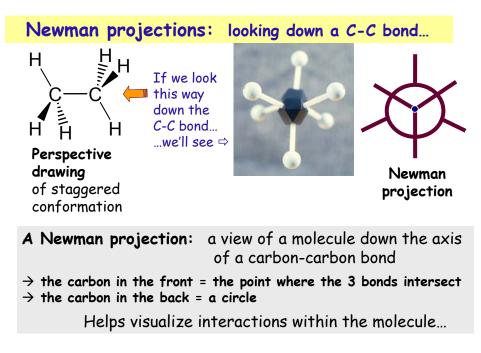
produces "torsional strain"



keep rotating (total of 60° from eclipsed)

STAGGERED bonding electrons as far apart as possible lowest E conformation

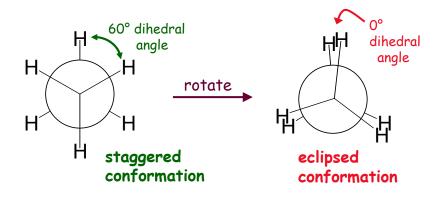
(15)


3 kcal/mol ~12 kJ/mol difference in E

At room temperature, molecules have sufficient kinetic energy to get over barriers as high as 20 kcal/mol (~80 kJ/mol).

⇒ at R.T., have constant rotation around C-C bonds (& all other single bonds) ⇒ conformational flexibility

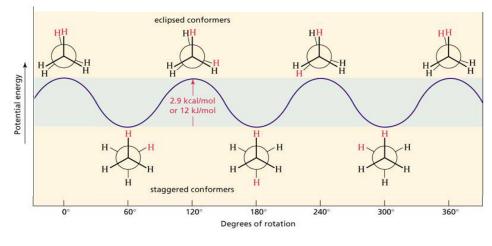
> However: molecules spend most of their time in the more stable *staggered* conformations (energetically favorable)



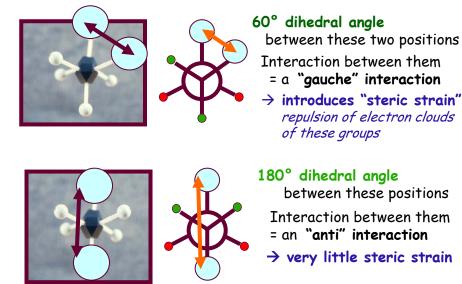
(17)

Visualize spatial relationship between atoms bonded to adjacent carbon atoms

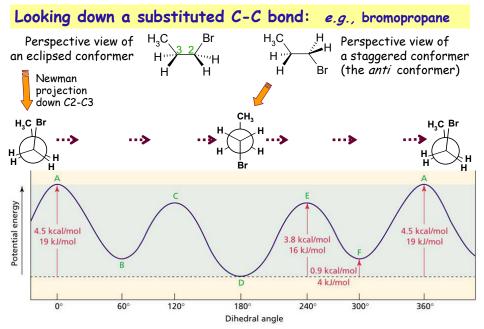
 \rightarrow get feeling for torsional strain in different conformers \rightarrow predict which conformation most molecules will adopt!


Dihedral angle (θ) = angle between groups on adjacent atoms as viewed in the Newman projection

(18)


Different Conformations of Ethane

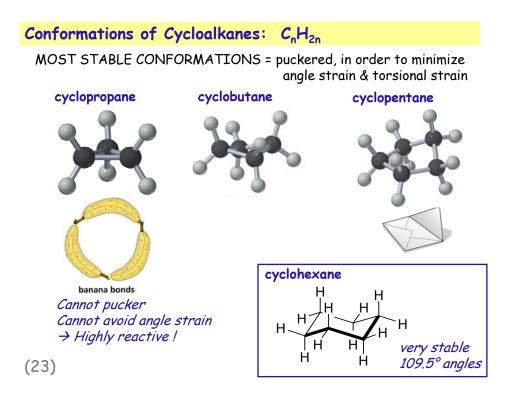
- Torsional strain = repulsion between pairs of bonding es
- Staggered conformers more stable than eclipsed conformers

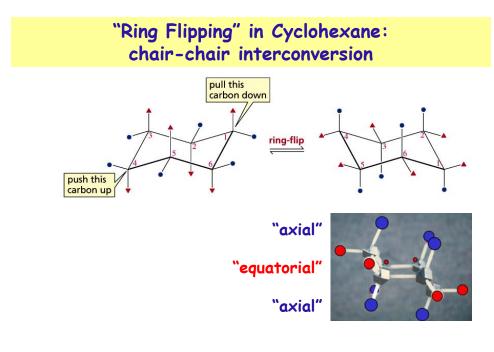


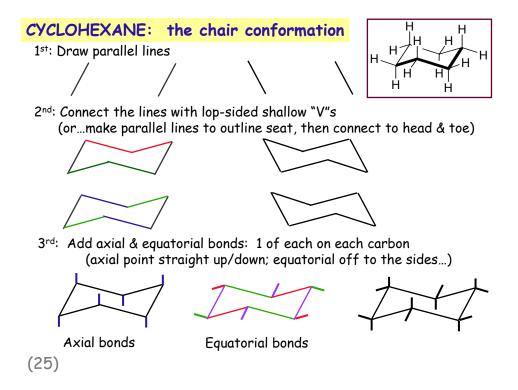
(19)

If have substituents on the C-C bond... → must consider their "STERIC" demand (bulkiness)

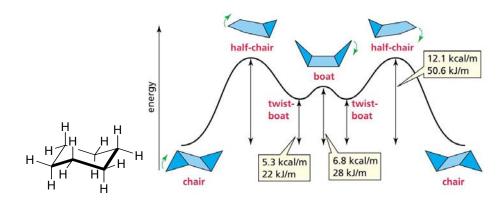
(20)

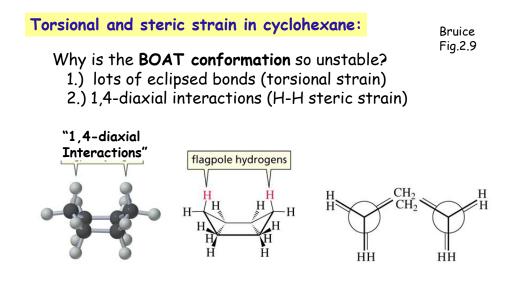


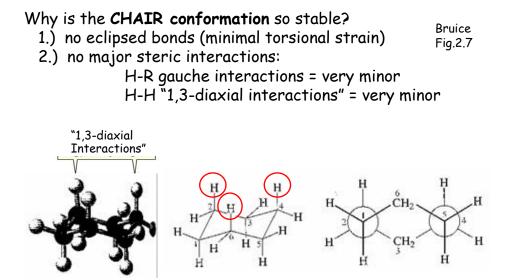

Bruice Fig.2.5 – for butane's conformations, looking down C2-C3 bond \rightarrow CH₃-Br steric repulsions not exactly same as CH₃-CH₃, but same general trend


2.11 Cycloalkanes: Ring Strain

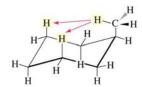
- Angle strain results when bond angles deviate from 109.5°
 - destabilization due to decrease in efficiency of orbital overlap
 - σ -bonds *should* be straight, not bent like a banana !



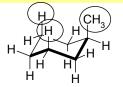




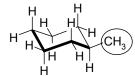
CYCLOHEXANE: 6-membered rings common in nature... study in more detail its "ring-flipping":



(27)


2.13 Substituted cyclohexanes

increased steric interactions: 2 chair confo's not necessarily same E



" 1,3-diaxial interactions "

Less stable CH₃ axial

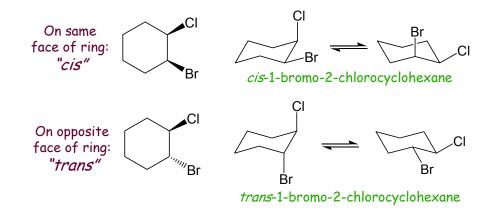
More stable CH₃ equatorial

BULKIER SUBSTITUENTS PREFER TO SIT IN EQUATORIAL POSITIONS because of fewer steric interactions

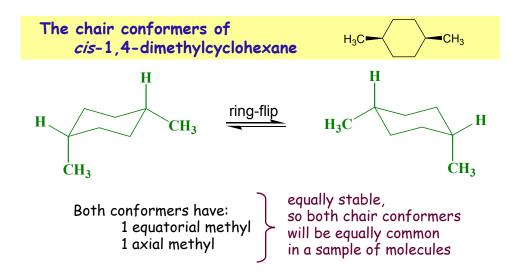
 ⇒ Less strain ⇒ increased stability
⇒ in a sample: most of the molecules will adopt the most stable conformation

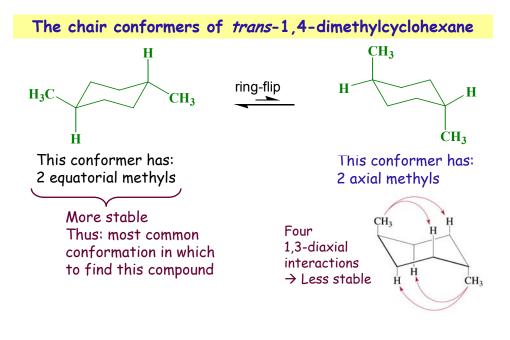
⇒ can predict most likely way molecules will look!
⇒ useful for predicting reactivity later...

(29)

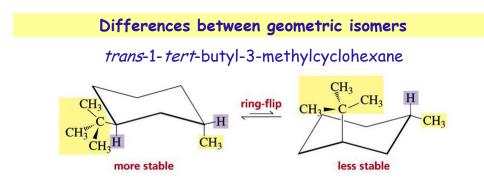

Larger substituents prefer equatorial positions						
Less spa ↑ steric ↓ stabili	strain H	HH =		More space ↓ steric strain ↑ stability		
Table 2.10 Equilibrium Constants for Several Monosubstituted Cyclohexanes at 25 °C						
Substituent	Axial $\stackrel{K_{eq}}{\longrightarrow}$ Equatorial	Substituent	Axial $\stackrel{K_{eq}}{\longleftarrow}$ Equatorial	K _{eq} = <u>[R equatorial]</u> [R axial]		
н	1	CN F	1.4			
CH ₃ CH ₃ CH ₂	18 21	Cl	2.4	larger K _{eq} ⇔ eq. preferred		
	35	Br	2.2	Good way to get		
CH ₃ CH CH ₃	35	I	2.2	a feeling for		
CH ₃ C CH ₃	4800	НО	5.4	"steric bulk"		

(30)

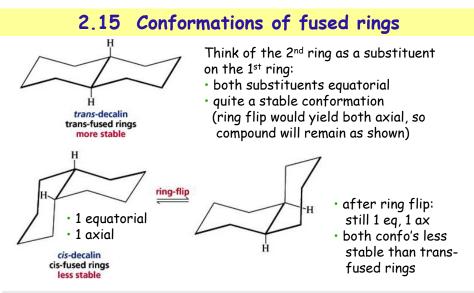

2.14 Conformations of disubstituted cyclohexanes


Naming convention: describes relative orientation of substituents to distinguish between *geometric isomers* = isomers with same connectivity of atoms,

but different spatial orientations



(31)



(33)

cis-1-tert-butyl-3-methylcyclohexane

Trans-fused cyclohexane rings are more stable than cis-fused rings (note: would have to break C-C bonds to change geometry of ring fusion...)

(35)

ASSIGNED READINGS

BEFORE NEXT LECTURE:

Read: rest of Ch.2

Practice: drawing & naming compounds (IUPAC) visualizing molecular conformations - Newman projections - using molecular model kits drawing cyclohexanes & "ring flipping"