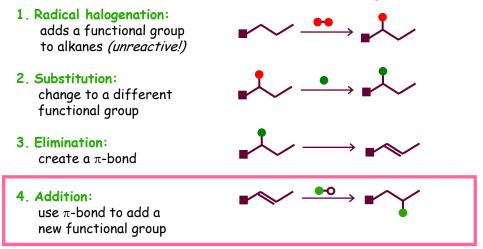
CHEM 221 section 52

LECTURE #06 Thurs., Feb.07, 2008

ASSIGNED READINGS:

TODAY'S CLASS:


3.6-3.8 4.1-4.5	Introduction to organic rxn mechanisms Alkene reactions
	electrophilic addition mechanism
	carbocation stability & rearrangements

NEXT CLASS: finish Ch.4 start Ch.5

(1)

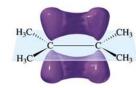
Organic synthesis: Playing with molecular building blocks

BASIC TYPES OF ORGANIC REACTIONS (...more in Organic II)

(2)

Chapter 4: Reactions of Alkenes

Chapter Goals

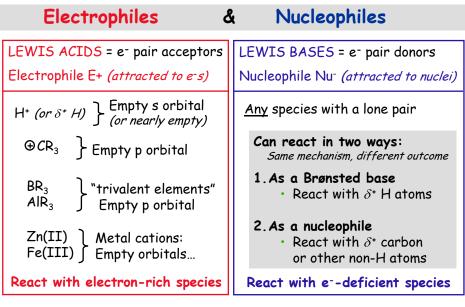

To learn the typical reaction of π -systems: electrophilic addition

• Learn how various electrophiles react with alkenes

- Understand the factors that determine product distribution
- Understand the relative stabilities of carbocations & alkenes
- Begin to think about synthesizing molecules of interest

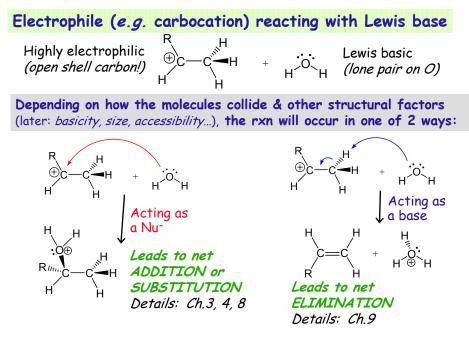
	4.1 4.2 4.3 4.4 4.5, 4.8	Addition of hydrogen halides Relative stabilities of carbocation intermediates Structure of the transition state Regioselectivity of electrophilic addition reactions Addition of water & alcohols: acid-catalyzed & others.
	4.6	Carbocation rearrangements
(3)	4.7 4.9 4.10 11.3, 11.6 4.12 4.13	Addition of halogens Addition of peroxyacids Addition of borane: hydroboration-oxidation Addition of radicals: relative stabilities of radicals Addition of hydrogen: relative stabilities of alkenes Reactions & synthesis

3.6 How alkenes react: electrophilic addition

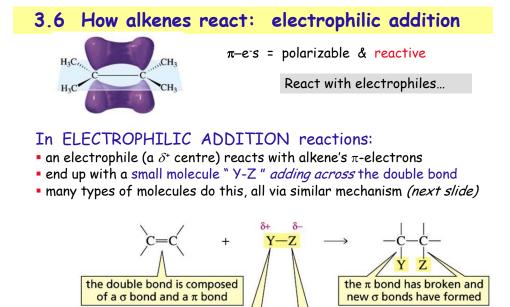


Electrons in π -bonds are very "exposed"

- not held tightly between nuclei like σ -bond e-s
- very polarizable
- quite reactive!

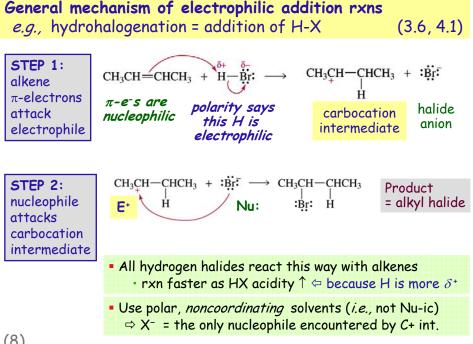

 \rightarrow alkenes behave as if "<u>electron-rich</u>"

Alkenes react with electrophiles (*i.e.*, e^- pair acceptors / LEWIS ACIDS) • common electrophiles: H⁺(*i.e.*, δ^+ H's), metal cations, boron compounds...



Review Bruice sect. 1.26

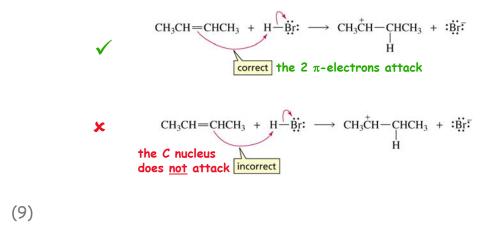
(5)


(6)

electrophile

nucleophile

(7)


(8)

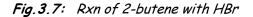
Curved arrows <u>always</u> go from Nu: to E⁺ (3.6)

"Arrow pushing" illustrates rxn's mechanism: shows where e-s are going

- arrows start at e⁻ rich centre (bond or lone pair):
- arrows point to e⁻ deficient centre (empty orbital or δ⁺ atom):

IMPORTANT: see text for examples of correct vs. incorrect arrow usage

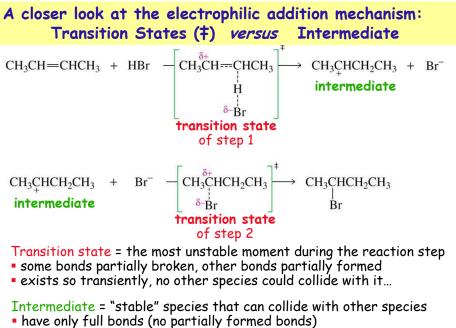
Rxn coordinate diagram illustrates E of rxn pathway (3.8, 4.3)


Which step here is slower?

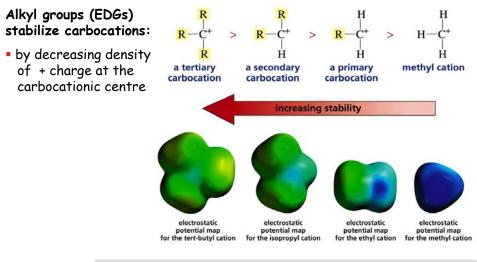
Nu:

F+K

- larger ∆G[‡]
 ⇒ smaller rate constant, k
 ⇒ slower rxn
- To speed up rxn: choose solvent that stabilizes \$\overline{1}_1\$

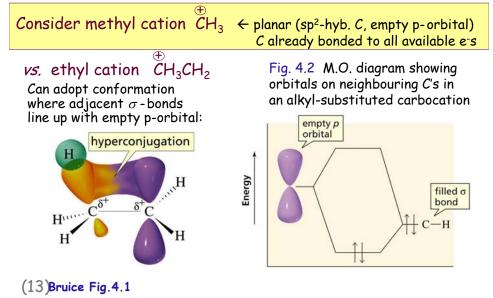

resembles carbocation!

The Hammond postulate: A rxn's transition state will resemble the species (reactant, product) to which it is energetically closer (*i.e.*, structurally similar)


Note: few slides at end = brief kinetics/thermodynamics review BUT: read through Bruice section 3.7 yourselves

(10)

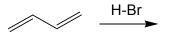
but if have an open-shell atom (e.g., carbocation) ⇒ very reactive!
 (11)


4.2 Carbocation stabilities: more stable ⇒ easier to form

How does this inductive electron donation happen?

Hyperconjugation: Partial delocalization of electrons

Can rationalize via inductive stabilization by electron-rich R groups, but orbitals give a more concrete explanation (also applies to radicals)

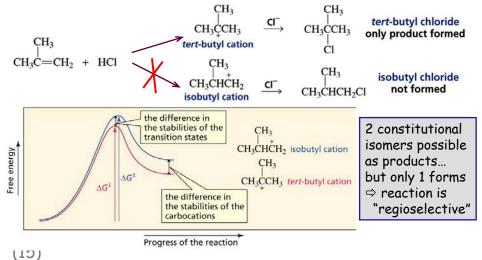

Relative stabilities of C 🕀 s: inductive & resonance effects > CH3-> CH₂=ĊH \approx CH₂=CHCH₂ CH₃-CH₂ CH Ĥ tert-butyl isopropyl ethyl cation cation cation allyl methyl benzyl cation tertiary secondary primary vinyl carbocation carbocation carbocation cation cation ncreasing stability

WHY IS C⊕ STABILITY IMPORTANT?

more stable carbocation intermediates form more easily *i.e.*, lower ΔG^{\ddagger} to reach $C \oplus$ –like $\ddagger \Leftrightarrow$ faster rxn via that path

 \Rightarrow can predict dominant product if ≥ 2 possible

Ex.: hydrobromination of 1,3-butadiene



(14)

THUS: Regiochemistry of electrophilic addition (4.4) is determined by carbocation stability

"Regio" refers to the site in the molecule where the rxn takes place *e.g.,* if more than C could end up bonded to the electrophile,

then you must worry about which "regiochemistry" is preferred

Predicting regiochemistry: Markovnikov's rule If $E_{+} = H$: the H adds to sp^2 C already bonded to larger # of Hs.

MARKOVNIKOV ADDITIONS: when electrophile = δ^+ H atom• 1st step: H attaches to less highly substituted sp2 C• Result: C+ centre on more highly substituted sp2 C (more stable)• Examples: addition of HX, acid-catalyzed addition of H2O, HOR...(16)

Rearrangements = Hydride shift OR alkyl shift

Mechanism: bonding pair from adjacent C is "stolen" by C+ centre ⇒ substituent moves onto C+ centre, leaving behind a more stable C+

Ex.: hydrobromination of 3-phenylpropene

(18)

Carbocations do not always rearrange ... CH₃ CH₃ CH₃ CH₃CHCH₂CHCH₃ → CH₃CHCHCH₂CH₃

2° carbocation

Also 2° \Rightarrow Not any more stable than 1^{st} carbocation

Carbocation rearrangment can lead to "Ring Expansion" (driven by relief of ring strain)

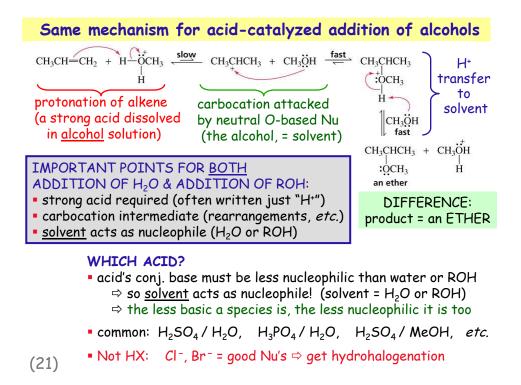
Keep on the watch for: carbocationic centres 1 bond away from a ring

& then see if the ring-expanded product has significantly lower ring strain or not

(19)

4.5 Addition of water & addition of alcohols Markovnikov addition: occurs in acid; electrophile = H⁺

NET RESULT: Add H-OH or H-OR across the C=C bond

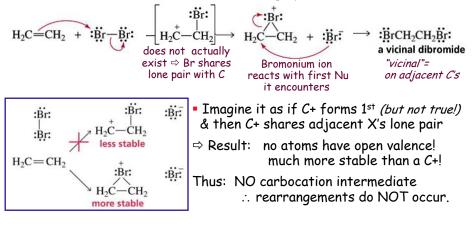

MECHANISM: electrophile = H⁺ (rxn won't happen without acid...)

1.) strong acid protonates C=C bond \Rightarrow carbocation intermediate

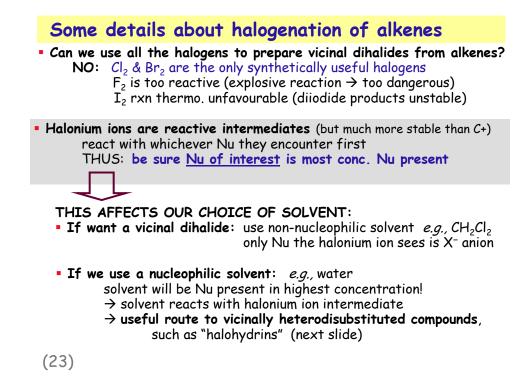
2.) nucleophile (water or alcohol) attacks carbocationic centre

3.) H⁺ transfer to solvent ⇒ neutral alcohol or ether product

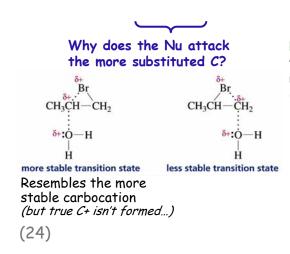
Hydration of an alkene:


4.7 Addition of halogens: "halogenation"

NET RESULT: Add X-X across the C=C bond ⇒ vicinal dihalide product


MECHANISM: polarizable X-X acts as $\delta^{+}X-X\delta^{-}$

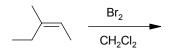
1.) C=C bond attacks "X+" ⇒ cyclic halonium ion intermediate


- 2.) nucleophile (X-) attacks halonium ion
 - \Rightarrow X ends up bonded to the more highly substituted C

(22)

Addition of Halogens in the Presence of Water: "Halohydrin" formation (cmpd with vicinal X & OH)

Regiochemistry:


the OH ends up on the more highly substituted C (as usual: <u>electrophile</u> bonds to the C with more H's on it)

What products would these reaction conditions yield?

Ask yourself:

 π -bond attacks E's δ^+ atom...

- 1) What is the electrophile? ...& E ends up on least substituted C
- 2) Does a carbocation result? --- If yes: form most stable cation possible • 1st: via regiochemistry of E addition
 - 2nd: via rearrangement(s)
- 3) What is the nucleophile? --- Nu reacts with electrophilic carbon (of highest concentration) (be sure to check if solvent is nucleophilic!)

(25)

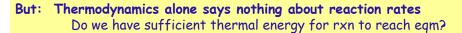
ASSIGNED READINGS

BEFORE NEXT LECTURE:

Read: rest of Ch.2

Practice: drawing cyclohexane & ring flipping

Next 3 slides:

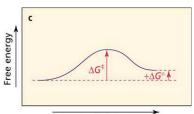

Kinetics / thermodynamics review

see Bruice section 3.7

(27)

3.7 Thermodynamics and kinetics: REVIEW

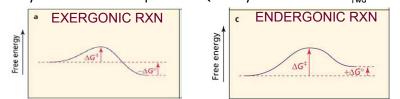
THERMODYNAMICS Enthalpy relates to • recall: $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ stabilization due to bonds ΔH^{ρ} estimated using bond and $\Delta G^{\circ} = -RTln K_{ea}$ energies (formed - broken...) So: what will our rxn mixture be like when Entropy relates to disorder it reaches EQUILIBRIUM: ΔS^{o} estimated by comparing • large, negative ΔG°_{rxn} : product-favoured degree of movement (P - R) · large, positive ΔG°_{rxn} : reactant-favoured b Fig. 3.3 energy Reaction coordinate Free reactants R products diagrams: -AG +AG show free E P products reactants of reactants, products, AND Progress of the reaction Progress of the reaction transition state (‡) an exergonic reaction ∆G° is negative an endergonic reaction ΔG° is positive $K_{\rm eq} > 1$ $K_{\rm eq} < 1$ (28)


KINETICS: rxn rate depends on temperature, because of E barrier

Reaction rate = (rate constant) × (concentration dependence) 1st order: rate = k[reactant] 2^{nd} order: rate = k[reactant]² or rate = k[reactant A][reactant B] depends on the reaction's mechanism ...

Activation energy, E_a : also depends on the mechanism!

- E needed to reach ‡ (some bonds partially broken, others forming...)
- E of collided reactants must exceed E_a for rxn to occur
 - Arrhenius' equation: $k = Ae^{-Ea/RT}$
 - E_a is a purely enthalpic quantity: considers bond strengths only
 - the A term includes entropic factors

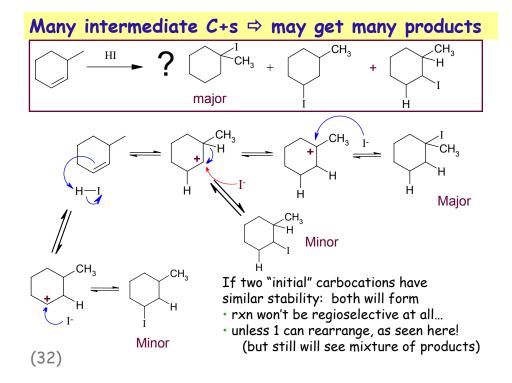

Progress of the reaction

(29)

Why this information is useful to an organic chemist

Because rxn rates depend on "getting over the energy barrier":

- anything that stabilizes rxn's transition state will make rxn faster
- choose solvent that interacts better with $\ddagger \Rightarrow$ lower $\ddagger's \in \Rightarrow \downarrow \Delta G^{\ddagger}$
- If both the forward & reverse rxns are "thermally accessible": system can reach equilibrium (steady state with rate_{fwd}=rate_{rev})


IMPORTANT: Composition of rxn mixture AT EQUILIBRIUM depends on relative thermodynamic stabilities of reactants vs. products. At equilibrium, the more stable species will dominate. WHY?

- Consider an exergonic rxn: products more stable than reactants
 - IMPLIES: lower activation barrier for fwd rxn vs. reverse rxn

 - ⇒ rate constants: $k_{fwd} > k_{rev}$ ⇒ rate faster in forward direction until build up large [product]
 - ⇒ by the time rate_{fwd} = rate_{rev}, have more products than reactants

Extra example: C+ rearrangements

(31)

