CHEM 221 section 52

LECTURE #09 Thurs., March 06, 2008

ASSIGNED READINGS:

TODAY'S CLASS:

- 5.1-5.4 in Lect.07's notes actually...
- 5.21 Biological relevance of chirality
- 5.5-5.14 Drawing & naming enantiomers & diastereomers Measuring chiral compounds in the lab Separating enantiomers

NEXT CLASS: finish Ch.5, start Ch.9, 10

(1)

5.4, 5.6 Drawing enantiomers

To draw a molecule's enantiomer:

- 1. Draw perspective drawing: show all 3D info. for asymmetric atoms (*)
- Imagine reflecting molecule in a mirror
 configuration of EVERY asymmetric atom will be inverted
- 3. Check: is this really a different compound?
 original & mirror image are enantiomers only if *nonsuperimposable*

Shortcut: to draw a chiral C (*i.e.,* C*) with opposite configuration, detach any 2 groups from that C* & switch their places

(4)

5.7 Assigning configuration of chiral centres: "the R,S system"

- Assign priority to 4 groups attached to asymmetric centre. use Cahn-Ingold-Prelog rules: higher atomic # ⇒ higher priority (same as for E/Z...)
- 2. Picture molecule with LOWEST priority group aimed AWAY from you
- 3. Trace a circle through other 3 groups from highest → lowest priority: Clockwise

Clockwise = (R) rectus (Latin right) Counterclockwise = (S) sinister (Latin left)

Traces in a clockwise direction ⇔"R" *Like turning right on a steering wheel*

(6)

5.7 & 5.13: IUPAC naming of stereoisomers

If more than one chiral C, use comma between #-letter combinations

5.3, 5.5 Stereocenters & stereoisomers: terms & #s

stereogenic centre = atom that gives rise to stereoisomers stereocentre if two groups attached to it are interchanged (via breaking & making bonds...)

ONE TYPE OF STEREOCENTRE:

asymmetric centre chirality centre chiral centre = atom bonded to 4 different groups (*i.e.*, no symmetry!)

How many stereoisomers possible ? n stereocentres ⇒ max. 2ⁿ stereoisomers

(9)

How are different stereoisomers related?

Relationship	Structural difference	Physical properties	Practical implications
Enantiomers	ALL stereocentres opposite config.	identical	Only distinguishable in chiral environments
Diastereomers	Not ALL stereoCs opposite config.	different	Separable by distillation, crystallization, chromatography

cis / trans isomers are diastereomers

Molecules with asymmetric centres:

- if molecule is chiral: will have an enantiomer AND
- if >1 chiral centre: will also have diastereomers...

(11)

5.8-9: Chiral compounds are "optically active" *i.e.*, they rotate the plane of plane-polarized light

Enantiomers: same physical properties, different handedness

- interact differently with plane-polarized light (chiral!)
- rotate the plane of PPL to same extent, but in opposite directions (clockwise vs. counterCW)

(13)

(14)

If we have two polarizers in a row... ...light passes through if they are aligned (both at 0°)

(15)

If not aligned: less light passes through...

NO LIGHT passes if polarizers are "crossed" (oriented at 90° to each other)

see demonstration...

(16)

So, how is PPL chiral ?

Plane-polarized light = made up of two <u>chiral</u> light waves! (right CPL) + (left CPL)

Circularly polarized light (CPL) propagates through space as helices, either right-handed or left-handed *i.e.,* CHIRAL light beams!

(17)

Remember: right hands fit better into right gloves... *i.e.*, interactions of chiral species are hand-specific

When plane-polarized light interacts with chiral molecules, rotation of the plane of polarization occurs.

- right CPL & left CPL are each chiral...
- interact to different extents with chiral molecules!
- result: one CPL gets slowed down more than other
 ⇒ net rotation of polarization plane

Clockwise rotation: (+) "dextrorotatory" species (d or D) e.g., (d)-methionine

Counterclockwise: (-) "levorotatory" species (/ or L) e.g., (l)-methionine

A polarimeter:

- used to measure rotation of polarized light
- substance of interest placed between two polarizers

(18)

USING A POLARIMETER

chiral sample rotates plane ⇒ less light passes...

- \rightarrow YOU turn one polarizer until appears bright again
- \rightarrow angle polarizer rotates = sample's optical rotation (α)

(19)

- For a pair of enantiomers: one is (+), other is (-) magnitude of rotation is identical
- "racemic mixture" : 50/50 mixture of enantiomers +/- rotations equal ⇒ no net rotation!

(20)

Knowing the absolute configuration (R/S) of a compound does NOT let us predict the sign of the optical rotation, d(+) or l(-)

Likewise, absolute configuration CANNOT be determined from the sign of the optical rotation.

BUT: if sign of rotation of one enantiomer IS known... the other enantiomer <u>will</u> have opposite sign.

Quantifying optical rotation: an extensive property...

How much the plane of polarized light is rotated depends on:

- compound's identity & its concentration
- temperature, length of sample tube, wavelength of light

(23)

EX: A solution (100 mL) of 16.5 g of (/)-camphor in ethanol has an optical rotation of -7.29° at 20°C, using a 10 cm sample tube and a sodium lamp. What is its specific rotation?

Specific rotation =
$$\left[\alpha\right]_{D}^{20} = \frac{\alpha}{lc}$$

= $\frac{-7.29^{\circ}}{1 \text{ dm x 16.5 g/100 mL}}$
 $\left[\alpha\right]_{D}^{20} = -44.2^{\circ} (0.165; \text{ ethanol})$

(24)

5.10 Optical purity & enantiomeric excess

Enantiomers rotate PPL in opposite directions

thus: net rotation depends on how much of each is present

A racemic mixture (racemate):

- contains equal #s of molecules of two enantiomers ("optical isomers")
- shows NO optical rotation.
- WHY? ⇒ equal concentration of molecules that rotate plane polarized light clockwise and counterclockwise.

In a non-racemic mixture of optical isomers:

- one enantiomer "A" is present in larger amount (excess)
- rotation due to enantiomer B will be cancelled out by A's rotation
- ⇒ net rotation observed: due to the excess quantity of A

"Enantiomeric excess" (e.e.) or "optical purity"

Measured specific rotation of the mixture	x 100 = % enantiomeric
Specific rotation of the pure enantiomer	excess

(25)

Ex: Describe the composition of an unequal mixture of enantiomers, with measured optical rotation: $[\alpha] = 10^{\circ}$ if optically pure (+) enantiomer has: $[\alpha] = 20^{\circ}$

THUS: (10° / 20°) × 100 = 50% optical purity *or,* 50% enantiomeric excess

measured rotation has + sign \Rightarrow means (+) enantiomer is in excess!

What is the ratio of optical isomers present in the mixture? What is the true meaning of optical purity / enantiomeric excess?

If 50% is optically pure, then the remaining 50% is racemic (+/- or d/l)

(26)

5.14: Rxns of cmpds with asymmetric carbons

Does the configuration at asymmetric centres change?

→ depends on whether or not bonds to asymmetric atom are broken during the reaction

- 1.) If no bonds to C* broken: relative configuration same
 - i.e., no change in relative positions of groups
 - BUT: might have changed one of the substituents enough that priority of group changes!
 i.e., <u>absolute</u> configuration might change

Does the configuration at asymmetric centres change? → depends on whether or not bonds to asymmetric atom are broken during the reaction

- 1.) If no bonds to C* broken: relative configuration unchanged
- 2.) If a bond to C* is broken: configuration MAY change
 → depends on mechanism of reaction!

Coming soon: mechanisms of this type of reaction!

(28)

5.16: Resolution of racemic mixtures = separating enantiomers (using clever tricks!)

1. BRUTE FORCE: Pasteur...

- resolved crystals of sodium ammonium tartrate (from wine)
- viewed crystals under microscope: left- vs. right-handed crystals
- separated them by hand...

2. BIOLOGICAL RESOLUTION: stereoselective rxn

- feed a racemic mixture to a biological system
- only converts one enantiomer to another product
- I leaves behind the other enantiomer unchanged (= the one you want?)

3. PREPARATION OF DIASTEREOMERS: reversible rxn

- chemical rxn: modify enantiomers so they stop being enantiomers...
- separate diastereomeric products (different physical properties!)
- undo the rxn: convert separated products back into reactants

e.g., acid-base chemistry (easily reversible)...

(29)

5.12: Meso Compounds

Picture a molecule with two asymmetric centres that have identical groups on them...

Depending on their configurations, the molecule overall can have an INTERNAL plane of symmetry.

→ Molecule overall is ACHIRAL called a "meso compound"

Brown & Foote Fig. 3.4 (textbook on reserve) Nice pictures in Bruice too

IMPLICATION: optically inactive

stereocentres in SAME molecule are mirror images

- ⇒ cancel out each other's optical rotation
- ⇒ like a racemic mixture inside one molecule!

Internal plane of symmetry \Rightarrow ACHIRAL molecule

Aside: in 5.9, see "erythro" vs. "threo" to describe isomers with >1 C* If can rotate to have similar groups on same side of chain: erythro If config. Makes similar groups remain on opposite sides: threo BUT YOU ARE NOT STRICTLY RESPONSIBLE FOR THIS!

(33)

(35)

ASSIGNED READINGS

BEFORE NEXT LECTURE:

- Read: Ch.5 (all)
- **Practice:** assigning R/S configuration identifying enantiomers & diastereomers DRAWING & NAMING stereoisomers

 products/mechanisms of alkene reactions
 → try thinking about stereochemistry too... (covered next class)