CHEM 221 section 52

LECTURE #10 Thurs., March 13, 2008

ASSIGNED READINGS:

TODAY'S CLASS:

5.20-5.21	Alkene reactions:	stereochemistry
11.1-11.9	Alkane reactions:	functionalizing a hydrocarbon
8.1-8.2	Substitution rxns:	replacing a LEAVING GROUP with a nucleophile (new group)

(1)

5.20: Stereochemistry of enzyme reactions

Biochemistry = study of reactions in biological systems • nucleic acids, carbohydrates, proteins (*e.g.*, enzymes): CHIRAL...

Biological reactions involve: not additions of X₂, BH₃... but H₂O, yes! aqueous environment

- acidic (RCOOH) & basic (RNH₂) groups present in proteins
 ⇒ acid-catalyzed reactions of many kinds occur!
- catalysis by enzymes: rxns have preferred reactant stereochemistry AND product stereochemistry

5.19 Stereochemistry of electrophilic additions

In ACHIRAL SETTING: Stereochemical outcome depends on fact that...

- Alkene π-bonds are planar
 - \Rightarrow Equal probability of rxn at either "face" of π -bond
 - ⇒ Possibility of forming > 1 stereoisomer
 - (must analyze products to see if molecules are actually same)
- Carbocation & radical intermediates have an open-shell sp² atom
 ⇒ Attack is equally likely from both faces...

⇒ Possibility of forming 1 or 2 new chiral centres, depending on rxn...

To predict stereochemistry, consider nature of rxn's mechanism:

- 1. Concerted attack of E⁺ & Nu⁻: hydroboration; hydrogenation?
 - no intermediate formed
 - stereochemistry results only from: syn addition to alkene
 OR
- 2. Step-wise attack of E⁺ & Nu⁻: rest of electrophilic additions?
 - intermediate forms, then reacts with nucleophile
 - $\mathbf{E}^{\scriptscriptstyle +}$ atom in intermediate can be attacked from either face

(3)

GENERAL STRATEGY: always analyze alkene reactant 1st
if an sp² C has 3 different groups: if is 1 step away from being a chiral center (*i.e.*, is "prochiral")
if not: addition will not result in formation of chiral centres
⇒ Do not memorize outcomes: just picture mechanism happening!

1A. Stereochemistry of Hydroboration-Oxidation

- Concerted attack of πe^{-s} on B-H bond: Always syn addition
- In 1st step: H-B can add to either side of C=C initially, so get <u>both</u> possible syn products
- Subsequent steps to replace B by OH: stereochemistry defined is 1st step is unaffected (configurations of carbon atoms remain unchanged)
 ⇔ described as proceeding with "retention of configuration"

2A. Stereochemistry of hydrohalogenation

H₃CH₂C/////

H₃C[•]

"MCH₂CH₃

CH₃

ù

CH2CH3

₄CH₃

CI

H₂CH₃C ~

H₃C

(6)

Complete description of products INCLUDES STEREOCHEMISTRY OF ALL.

(7)

2B. Stereochemistry of radical hydrobromination

bromine radical can add to either side of C=C ⇒ 2 possible config's
 then: alkyl radical intermediate can react with H from either side
 (*i.e.,:* R• abstracts H• via attack from either top or bottom face of C...)

⇒ can form maximum of 4 stereoisomers

(8)

Predict the major products of these rxns (include stereo...)

Chapter 11: Reactions of Alkanes

Chapter Goals

Appreciate the general unreactive nature of alkanes, plus the conditions that can lead to alkanes reacting.

• Understand mechanism of radical halogenation - *including stereochem*.

<u>Chapter Outline</u>: (responsible for level of detail presented in the notes)

11.1 The low reactivity of alkanes 11.2 Chlorination and bromination of alkanes: radical substitution 11.3-5 Factors that determine product distribution: radical stability 11.6 Addition of radicals to an alkene (already seen!) 11.7 Stereochemistry of radical reactions 11.8 Radical substitution of benzylic & allylic hydrogens 11.9 Planning a synthesis - more practice [11.10 Radical reactions in biological systems] [11.11 Radicals and stratospheric ozone] Interesting but not covered.

(11)

11.1 The low reactivity of alkanes

Could we predict the typical reactivity of alkanes? YES...
nonpolar, with only C-C and C-H σ-bonds

high pKas, not electrophilic, not nucleophilic...
unreactive towards most other substances
they only react with highly reactive species (or at very high T.)

Combustion reactions: oxidation via complex radical mechanism large activation energy (needs a spark...)

C_xH_y + Y/₂O₂ → xCO₂ + Y/₂ H₂O

Catalytic cracking: breakdown into shorter branched chains

important in petroleum refining
sort of like alkene hydrogenation in reverse, then back again
requires high temperatures & catalysts (*i.e.*, hard to do!)

Radical halogenation reactions: not-so-complex radical mechanism C_xH_y + ¹/₂ X₂ → C_xH_{y-1}X + HX

(12)

11.2 Radical halogenation of alkanes (by Cl_2 , Br_2)

- Cl_2 & Br_s are synthetically useful (F_2 too dangerous; I_2 too slow)
- High temperature or light needed: to homolytically cleave the X₂ bond
- Use excess alkane (X₂ as L.R.) to minimize dihalogenated product

Mechanism: radical chain reaction (similar to alkene HBr/ROOR rxn)

11.3-5 Factors that determine product distribution

1. Radical intermediate involved: (produced in rxn's rate-limiting step)

- more stable radical intermediates will form faster (lower E ‡)
- rearrangements do not occur for radicals

⇒ REGIOCHEMISTRY: X• prefers to abstract H• from the most highly substituted C (∴ X• later adds to...)

(14)

2. Chlorine atoms (radicals) are more reactive than bromine atoms

- Smaller atom, higher effective nuclear charge
 - ⇒ Cl· has more driving force for abstracting H•
 - ⇒ Cl• is more reactive, thus "less selective", than Br•

= (number of Hs at that type of site) x (reactivity)

11.7 Stereochemistry of radical substitution

■ halogen radical attacks C-H bond ⇒ planar radical intermediate

- then: alkyl radical intermediate can react with X· from either side
 - (*i.e.*): R• abstracts X• via attack from either top or bottom face of $C_{...}$)

THUS: can form 1 new asymmetric center, but racemized ⇒ Form maximum of 2 stereoisomers (enantiomers here...) (17)

When planning: consider regiochem, stereochem & control...

Would this mixture be optically active? Why or why not?

Is it smarter to use $Cl_2 / h\nu$ or $Br_2 / h\nu$? What product(s) will we get? **11.8 Radical Br'n at benzylic & allylic positions:** selective reagent: NBS (*N*-bromosuccinimide)

(19)

Synthesis "break"...

(22)

Ch.8: Substitution Reactions of Alkyl halides

<u>Chapter Goals</u>

Understand the two basic types of substitution reactions.

- Learn the mechanisms of S_N1 & S_N2 rxns including stereochemistry.
- Understand the concept of nucleophilicity and its role in reactions.
- Understand competition between different reaction pathways.
- Understand the effect of solvent on relative reaction rates.

Chapter Outline:

- 8.1 How alkyl halides react
- 8.2-4 The S_N^2 reaction: a CONCERTED substitution rxn
- 8.5-6 The S_N1 reaction: a STEP-WISE substitution rxn...
- 8.7 More about the stereochemistry of $S_N 1/S_N 2$ reactions
- 8.8 Benzylic, allylic, vinylic and aryl halides
- 8.9 Competition between S_N2 and S_N1 reactions
- 8.10 The role of solvent in S_N^2 and S_N^1 reactions
- 8.11 Intermolecular vs intramolecular reactions
- [8.12 Biological methylating agents]

(23)

Because a nucleophile substitutes for the halogen, these reactions are known as **nucleophilic substitution rxns**

The reaction mechanism that predominates (one-step $S_N 2$ vs. two-step $S_N 1$) depends on:

- the structure of the alkyl halide
- the reactivity of the nucleophile
- the concentration of the nucleophile
- the solvent used for the reaction

(25)

8.2 The Mechanism of an S_N^2 Reaction

 $HO\overline{:} + CH_3 - Br\overline{:} \longrightarrow CH_3 - OH + :Br\overline{:}$

A single-collision rxn (elementary step) between 2 molecules = "bimolecular"

"SUBSTITUTION NUCLEOPHILIC BIMOLECULAR" = "S_N2"

Consider the kinetics of the reaction:

Rate = k [alkyl halide][nucleophile] a second-order reaction

(27)

(28)

What would be the major product(s) of these $S_N 2 r \times ns$?

EXPERIMENTAL EVIDENCE: How can we tell if a substitution is occurring via the S_N^2 mechanism?

$$H \ddot{O} = \dot{C} H_3 - \dot{B} \dot{R} = \dot{C} H_3 - OH + \dot{B} \dot{R} = \dot{C} H_3 - OH + \dot{B} \dot{R} = \dot{C} H_3 - OH + \dot{C} \dot{B} \dot{R} = \dot{C} H_3 - OH + \dot{C} \dot{B} \dot{R} = \dot{C} \dot{H}_3 - OH + \dot{C} \dot{B} \dot{R} = \dot{C} \dot{H}_3 - OH + OH + \dot{C} \dot{H}_3 - OH + OH + OH + OH + OH + OH +$$

1. 2nd order kinetics: rate of rxn depends on concentration of BOTH alkyl halide & nucleophile

2. Inhibited by bulk: for rxn with a given Nu, rxn rate \downarrow if steric bulk of alkyl halide \uparrow

Picture it: Nu must be able to reach the $\delta^+ C!$

3. Inversion: configuration at attacked C inverted in product compared to reactant alkyl halide \rightarrow only relevant for <u>asymmetric</u> δ^+ C's...

(31)

STERIC HINDRANCE: A bulky substituent in the alkyl halide reduces the reactivity of the alkyl halide

Picture it: can the nucleophile get where it needs to go??

- Nucleophile must make contact with the $\delta^+ C$ atom
- Larger substituents on this C block Nu's access!

relative reactivities of alkyl halides in an S_N2 reaction

Fig.8.2

relative reactivities of alkyl	halides in an S _N 2 reaction
--------------------------------	---

most reactive methyl halide > 1° alkyl halide > 2° alkyl halide > 3° alkyl halide < least reactive				
Table 8.1 Relative Rates of S _N 2 Reactions for Several Alkyl Halides				
R—	$\frac{\mathbf{Br}}{\mathbf{R}} + \mathbf{Cl}^{-} \xrightarrow{\mathbf{S}_{N}2} \mathbf{R} - \mathbf{Cl} + \mathbf{l}$	Br ⁻		
Alkyl halide	Class of alkyl halide	Relative rate		
CH ₃ —Br	methyl	1200		
CH ₃ CH ₂ —Br	primary	40		
CH ₃ CH ₂ CH ₂ —Br	primary	16		
CH ₃ CH-Br	secondary	1		
CH ₃				
CH ₃				
CH ₃ C-Br	tertiary	too slow to measure		
CH3				

(33)

Rxn coordinate diagrams: picturing energetics

- Thermodynamics: products vs. reactants similar in E for both
- Kinetics: MUCH larger E_a for sterically hindered halide!

(34)

10.3 Factors affecting S_N^2 reactions

- the concentration of the nucleophile
- the concentration of the alkyl halide
- the structure of the alkyl halide: its steric bulk
 AND its leaving group
- the reactivity of the nucleophile
- the solvent used for the reaction

(35)

S_N2 rxns: affected by nature of Leaving Group (LG)

Ability of group to "leave" correlates with basicity:

- strong bases = poor LGs ⇒ reactive, prefer to stay bonded to C
- weak bases = good LGs ⇒ less reactive, more stable, betten et conmine lene pain

THINK ABOUT THIS (as we did at start of term...) Carbon and iodide have the same electronegativity

Why is RI the most reactive, since it's not very polar?

relative reactivities of alkyl halides in an $\ensuremath{\mathsf{S}_{\mathsf{N}}}\xspace^2$ reaction

most reactive RI > RBr > RCl > RF least reactive

Explanation:

- Large atoms are more polarizable than small atoms
- The high polarizability of a large iodide atom causes it to react <u>as if it were polar</u>

...and $\mathbf{I}^{\text{-}}$ is a very weak base, good at carrying charge... therefore a very good leaving group!

(37)

ASSIGNED READINGS

BEFORE NEXT LECTURE:

Read: rest of Ch.5 (alkene rxn stereochem.) Ch.11 (radical halogenation -superficially) Ch.8 (substitution reactions)

Practice: writing reaction mechanisms predicting products & stereochem.