CHEM 221 section 52

LECTURE #11 Thurs., March 20, 2008

ASSIGNED READINGS:

TODAY'S CLASS:

Ch.8 (all) Nucleophilic substitution reactions S_N2 (from last day's notes) S_N1 Competition between both mechanisms → trying to control what happens...

NEXT CLASS: lab exam (1st 40 min of class) finish Ch.8, start Ch.9

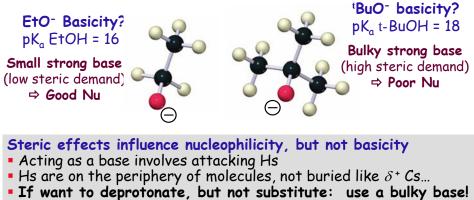
(1)

The nucleophile affects an S_N^2 reaction

"Nucleophilicity" = a measure of how readily a compound (a Nu) is able to attack an e-deficient atom ($\delta^+ C_{...}$)

• measured by a rate constant $(k) \Rightarrow$ it is a kinetic parameter

• Can the Nu get where it is going?


RELATED TO, BUT NOT SAME AS ...

"Basicity" = a measure of how well a compound (a base) shares its lone pair with a proton (H⁺)

measured via conjugate acid's dissociation constant (K_a)
 ⇒ a thermodynamic parameter
 How inherently e-rich (Lewis basic) is it?

Nucleophilicity is decreased by steric hindrance

Bulky Nu's have trouble accessing the back-side of Td C's:

(3)

Getting a feeling for nucleophilicity: how to compare? For Nu's of SIMILAR STERIC DEMAND: STRONGER BASE 1. Same attacking atom: ⇒ BETTER Nu 2. Attacking atoms in same row (similar size) 3. Attacking atoms in different rows MORE POLARIZABLE ⇒ BETTER Nu (different size) ∫ Remembering basicity & polarizability... For each pair: which is the better Nu? OH-& H2O F- & NH2-CH₃O⁻ & CH₃OH F- & I-CH₃CH₂NH⁻ & CH₃CH₂NH₂ CH₃O- & CH₃CH₂NH-Conj. base always better B & Nu than conj.acid... CH3OH & CH3SH *i.e.*, for same atom type, anion better Nu... (4)

Nucleophilicity trends: Same ideas, different wording

1. A species with a negative charge is a stronger nucleophile than a similar neutral species. In particular, a base is a stronger nucleophile than its conjugate acid.

OH⁻ → H₂O SH⁻

```
SH- > H2S
```

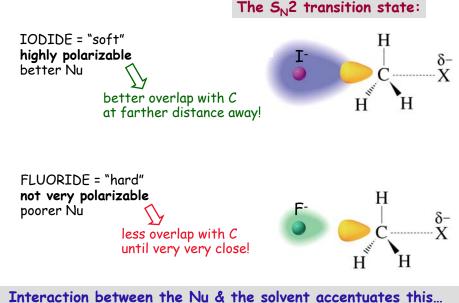
- $NH_2^- > NH_3$
- Nucleophilicity decreases from left to right in the periodic table (based on attacking atom), following the increase in electronegativity from left to right. The more electronegative elements have more tightly held nonbonding electrons (lone pairs) that are less reactive towards forming new bonds.

 $OH^- \rightarrow F^ NH_3 \rightarrow H_2O$

3. Nucleophilicity increases down the periodic table, following the increase in size and polarizability.

-SeH>-SH>-OH

I > Br > Cl > F


 $(CH_3CH_2)_3P \rightarrow (CH_3CH_2)_3N$

 $(CH_3CH_2)_3P \rightarrow (CH_3CH_2)_2S$

(5)

From Wade LJ, Organic Chemistry, 5th Ed.

Why does the POLARIZABILITY of Nu's attacking atom matter?

(Actually, in gas phase, polarizability doesn't matter at all...only basicity does.)

Solvent effects: strong bases less Nu-ic in protic solvents,

solvents with OH or NH groups = hydrogen-bond donors

solvent forms H-bonds with Nu's lone pairs... (or, could be strong ion-dipole interactions)

Nu's lone pairs "screened" \Rightarrow attack δ^+ C's less

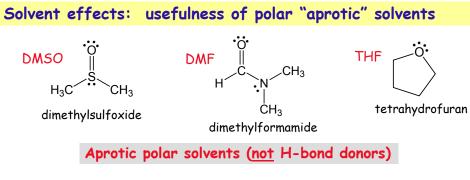

- harder bases = H-bond acceptors ⇒ highly screened ⇒ less Nu-ic
- softer bases interact less with H's ⇒ less screened ⇒ more Nu-ic

Table 8.2Relative Nucleophilicity Toward
$$CH_3I$$
 in Methanol $RS^- > \Gamma > \neg C \equiv N > CH_3O^- > Br^- > NH_3 > CI^- > F^- > CH_3OH$ increasing nucleophilicity in protic solvent

CRUCIAL: always choose a solvent that your Nu CANNOT deprotonate! (You must compare $pK_as...$) Otherwise, no Nu will remain to do desired rxn!

	GTH IN HYDROXYLIC H AS WATER & ALCO	(PROTIC) SOLVENTS HOLS)	
STRONG nucleophiles	MODERATE nucleophiles	WEAK nucleophiles	
(CH ₃ CH ₂) ₃ P:	:Br: [⊙]	÷Ë:⊖	
[©] :ё-н	:NH ₃	н-ё-н	
©: ८≡ N:	CH₃-S-CH₃	сн₃-ё-н	
(сн₃сн₂)₂йн [©] ё-н [©] ё-сн₃	:ĊI: [©] CH³c-Ö: _©	<u>REMEMBER</u> : Nu concentration is also important if lots is present, rxn WILL occur!	

(8)

Aprotic polar solvents: facilitate rxn of ionic compounds M⁺ Nu⁻

- 1. Won't screen your Nu-
 - no H-bond accepting groups in solvent molecules
- 2. Pull cations away from Nu-
 - δ^- O, N atoms interact well with M^+
 - $\delta^- C$, S atoms harder to access
 - makes Nu⁻ more naked & reactive to δ⁺ Cs in your desired target (electrophile...)

(9)

8.4 S_N2 reactions are equilibria (reversible rxns!) Which direction dominates?

$CH_3CH_2CI + HO^- \longrightarrow$	CH ₃ CH ₂ OH + CI ⁻ an alcohol	PREDICTING DIRECTION: weaker base gets displaced		
$CH_3CH_2Br + HS^- \longrightarrow$	CH ₃ CH ₂ SH + Br ⁻ a thiol	more often because is better able to		
$CH_3CH_2I + RO^- \longrightarrow$	$CH_3CH_2OR + I^-$ an ether	carry its charge/lone-pair		
CH_3CH_2Br + $RS^- \longrightarrow$	$CH_3CH_2SR + Br^-$ a thioether	THIS IS USEFUL: • use substitution rxns		
$CH_3CH_2CI + \neg NH_2 \longrightarrow$	$CH_3CH_2NH_2 + Cl^-$ a primary amine			
$CH_3CH_2Br + ^-C \equiv CR \longrightarrow$	$CH_3CH_2C \equiv CR + B$ an alkyne	since an eqm rxn, can		
$CH_3CH_2I + C \equiv N \longrightarrow$	$CH_3CH_2C \equiv N + \Gamma$ a nitrile	drive rxn in 1 direction by removing product		

(10)

Not only alkyl halides: All of this applies to compounds containing other leaving groups

Compare pK_as of conjugate acids of common leaving groups ⇒ convenient for predicting r×n's preferred direction ⇒ AND NOTE: not all leaving groups are ANIONS • protonated alcohols: H₂O can leave • protonated ethers: • protonated amines: NH₃ can leave

$$\begin{array}{c} & \bigcirc \\ & \square \\ & \square$$

(11)

What if we have a 3° alkyl halide & a weak Nu

$$CH_{3} - CH_{3} - CH_{3} - Br H_{2}\ddot{O}:$$

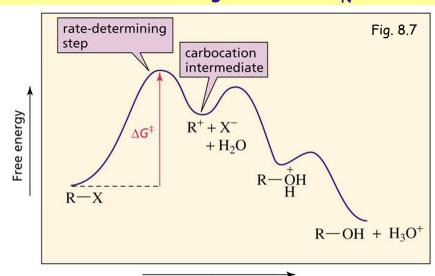
(so, no measurable S_N2 r×n)

BUT...

we are willing to wait around for a while...

8.5 The mechanism of an S_N 1 reaction

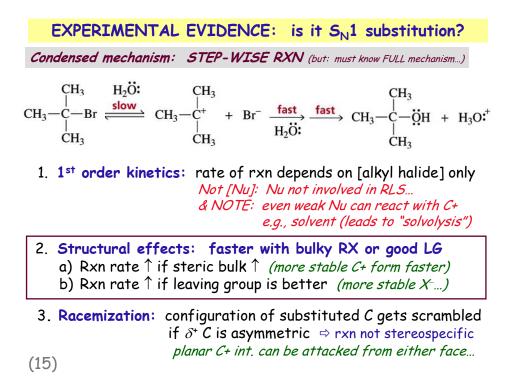
Carbocation ⇒ open shell ⇒ <u>HIGHLY</u> electrophilic !

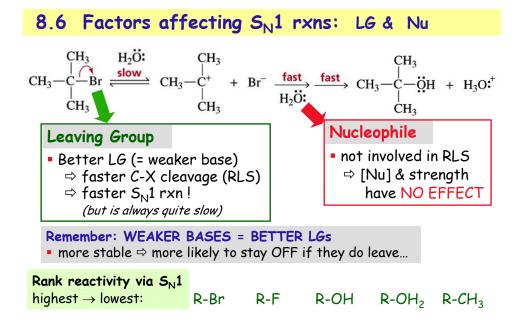

- RATE-LIMITING STEP
- stable molecule falls apart!
- rxn shows 1st order kinetics
- rate = k [alkyl halide]

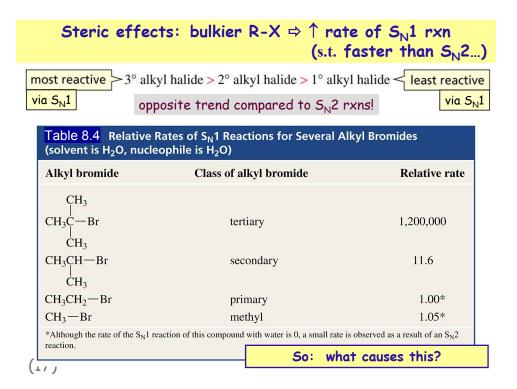
← Deprotonation by H₂O (If in neutral solution, ROH will be mostly in its neutral form)

"SUBSTITUTION NUCLEOPHILIC UNIMOLECULAR" = "S_N1"

L RLS involves only 1 molecule

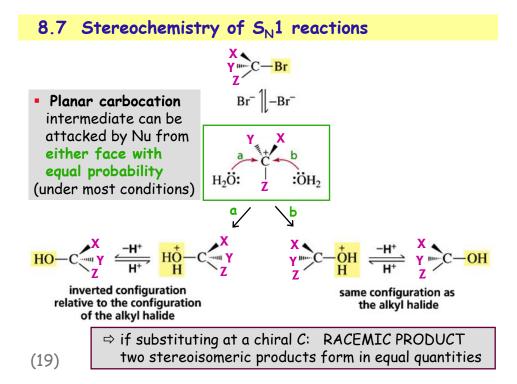

1st step (SLOW): LG leaves (heterolytic C-X bond cleavage)
 2nd step (FAST): Nu attacks carbocation intermediate
 & Possibly more steps: often see H⁺ transfer to/from solvent
 (13)

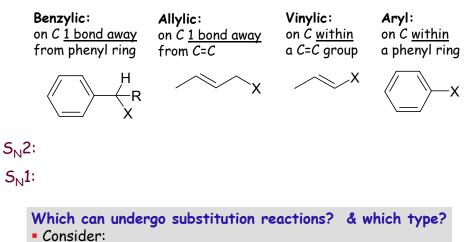



Reaction Coordinate Diagram for an $S_N 1$ Reaction

Progress of the reaction

(14)

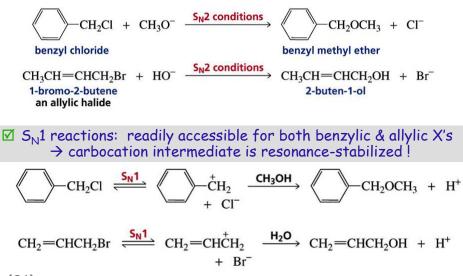



EXPERIMENTAL EVIDENCE: is it S_N1 substitution?
Condensed mechanism: STEP-WISE RXN (but: must know FULL mechanism...)
CH₃ - CH₃ H₂Ö: CH₃ - CH₃ + Br⁻ fast fast CH₃ - CH₃ - CH₃ + H₃O:⁺
CH₃ - CH₃ + CH₃ - CH₃ + CH₃ + CH₃ + CH₃ + CH₃ - CH₃ + CH₃ + H₃O:⁺
1. 1st order kinetics: rate of rxn depends on [alkyl halide] only Not [Nu]: Nu not involved in RLS...
2. Promoted by bulk: rxn rate ↑ if steric bulk of alkyl halide ↑ easier to form ‡ leading to more stable C+...

3. Racemization: configuration of substituted C gets scrambled if $\delta^+ C$ is asymmetric \Rightarrow rxn not stereospecific planar C+ int. can be attacked from either face...

(18)

8.8 S_N rxns of benzylic, allylic, vinylic & aryl halides

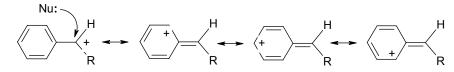


- a) S_N^2 : steric hindrance blocking Nu access electrostatic repulsion of Nu by π -electrons
- b) $S_N 1$: stability of carbocation intermediate

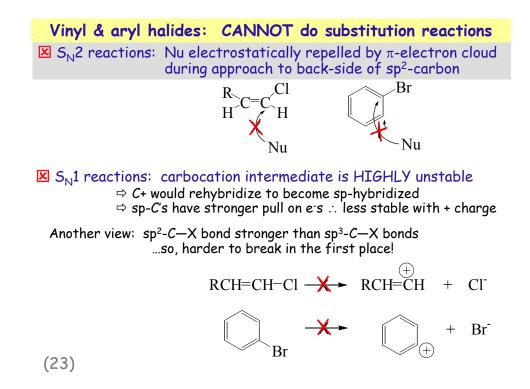
(20)

Benzylic & allylic halides: CAN do substitution reactions

✓ S_N2 reactions: readily accessible for both benzylic & allylic X's except if tertiary (too sterically hindered)


(21)

NOTE: > 1 product may result from S_N1 rxn of allylic halide • two C+ carbons evident when draw resonance structures:


$$\begin{array}{cccc} \text{CH}_{3}\text{CH} = \text{CHCH}_{2}\text{Br} & \overleftarrow{\mathsf{S_N1}} & \text{CH}_{3}\text{CH} = \text{CH}_{2}^{+}\text{H}_{2} & \bigoplus & \text{CH}_{3}^{+}\text{CHCH} = \text{CH}_{2} \\ & & \downarrow \text{H}_{2}\text{O} & & \downarrow \text{H}_{2}\text{O} \\ & & \text{CH}_{3}\text{CH} = \text{CHCH}_{2}\text{OH} & & \text{CH}_{3}\text{CHCH} = \text{CH}_{2} \\ & & + & \text{H}^{+} & & \text{OH} & + & \text{H}^{+} \end{array}$$

Multiple products do <u>not</u> occur for benzylic halides

- attacking within the benzene ring would break ring's "aromaticity" (e-s in cyclic array of overlapping p-orbitals gives extra stability)
- thus: resonance stabilizes the carbocation, but attack by Nu is still regioselective for the benzylic site

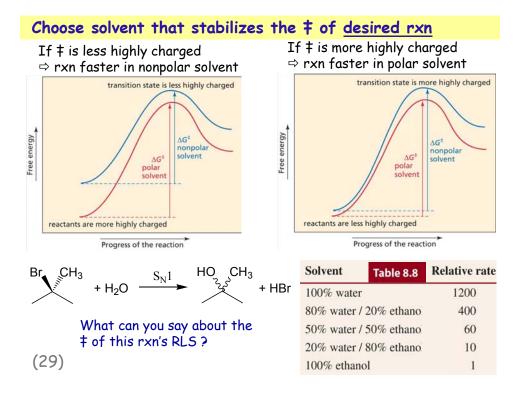
(22)

8.9 Competition between	S _N 2 & S _N 1 rxns Table 8.5			
	Table 8.6			
S_N^2 : predictable regio. & stereo.	$S_{N}1$: less control of regio./stereo.			
A one-step mechanism	A stepwise mechanism that forms a carbocation intermediate			
A bimolecular rate-determining step	A unimolecular rate-determining step			
No carbocation rearrangements	Carbocation rearrangements -			
Product has inverted configuration relative to the reactant	Products have both retained and inverted configurations relative to the reactant			
Reactivity order: methyl $> 1^{\circ} > 2^{\circ} > 3^{\circ}$	Reactivity order: $3^{\circ} > 2^{\circ} > 1^{\circ} > methyl$			
S_N^2 only doesn't occur	S_{N}^{T} only doesn't occur			
BOTH r×n mechanisms can (& do) occur for some R-Xs:				
 2° alkyl halides So how do we: 				
	predict which is more likely? control which one will dominate?			
(24)				

(25)

Careful selection of rxn conditions: helps control which mechanism will dominate Which substitution mechanism will dominate?

(27)


8.10 The role of solvent in $S_N 2 \& S_N 1 r \times ns$

What to worry about with solvents:

- Remember to check your Nu's basicity (pK_a of conj.acid)
 ⇒ don't want it to deprotonate your solvent
- So: consider the following properties of your solvent:
 - pK_α
- (to avoid deprotonating)
- protic *vs.* aprotic
- (to avoid Nu screening)

polarity

- (to stabilize RLS's ‡)
- 1. Consider **‡** of desired mechanism's RLS
 - Is the transition state (‡) charged or neutral?
 - Is it more charged or less charged than the reactants?
 - ...choose a solvent that will encourage the ‡ to form

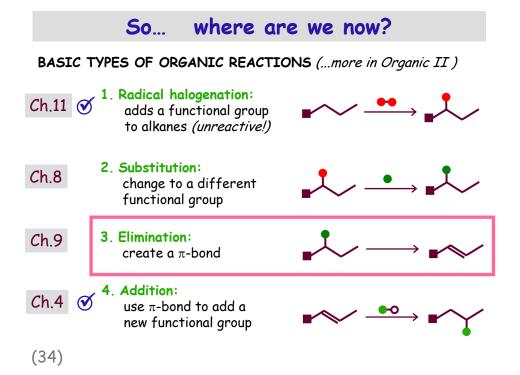
Choosing a	Solvent	Structure	Abbreviation	Dielectric constant
suitable	PROTIC SOLVE	NTS : pK _a < 18 ₪	⇒ be caret	ful with bases
solvent	Water	H ₂ O	_	79
Sulveill	Formic acid	HCOOH	_	59
- Dalanitu 3	Methanol	CH ₃ OH	MeOH	33
Polarity?	Ethanol	CH ₃ CH ₂ OH	EtOH	25
check e	tert-Butyl alcohol	(CH ₃) ₃ COH	tert-BuOH	11
Inertness?	Acetic acid	CH ₃ COOH	HOAc	6
check p <i>K</i> a	APROTIC SOLV	/ENTS: fine fo	or use with	strong bases
	→ Dimethyl sulfoxide	(CH ₃) ₂ SO	DMSO	47
	Acetonitrile	CH ₃ CN	MeCN	38
	→ Dimethylformamide	(CH ₃) ₂ NCHO	DMF	37
	Acetone	(CH ₃) ₂ CO	Me ₂ CO	21
	Dichloromethane	CH ₂ Cl ₂	_	9.1
	→ Tetrahydrofuran	$\langle \rangle$	THF	7.6
	Ethyl acetate	CH ₃ COOCH ₂ CH ₃	EtOAc	6
	Diethyl ether	CH ₃ CH ₂ OCH ₂ CH	3 Et ₂ O	4.3
	Benzene	\bigcirc	—	2.3
Table 8.7	Hexane	CH ₃ (CH ₂) ₄ CH ₃	-	1.9

Summary: controlling $S_N 2 / S_N 1$ competition

(31)

More examples

8.11 Intermolecular vs. intramolecular r×ns


Between 2 molecules

- normal situation...
- rxn faster if ↑ [Nu] or [E⁺]
- due to \uparrow collision frequency

Nu & δ^+ C (E⁺) in same molecule

- rxn more probable at low
 [molecule] = high dilution
- Nu end of molecule most likely to collide with its own δ⁺ "tail" ...not another molecule's

(33)

ASSIGNED READINGS

BEFORE NEXT LECTURE:

Read:	rest of Ch.8
Practice :	writing mechanisms of S _N 2 & S _N 1 predicting products of S _N 2 & S _N 1 predicting which mechanism is more likely
Study:	for lab exam, 1 st 40 min of next class
(35)	