CHEM 221 section 52

LECTURE #13 Thurs., April 03, 2008

ASSIGNED READINGS:

TODAY'S CLASS:

Ch. 9 Elimination rxns: loss of "H-LG" \rightarrow alkene product E2 = concerted β -elimination E1 = step-wise elimination via C+ intermediate Regiochemistry, stereochemistry Competition between E1 & E2

Competition between substitution & elimination

9.11 Synthesis - all specialized sections (4.12, 6.11...)

FINAL EXAM: Thurs. April 17th, 7-10 pm, CC-408

cumulative; some MC, explanations, drawings, mechanisms, synthesis
 samples: http://faculty.concordia.ca/rogers, click Teaching, 221...
 (1)

Ch.9: Elimination reactions of alkyl halides Competition between substitution & elimination

δ ⁻ RCH ₂ Cl	$ \begin{array}{c} \delta^{-} \\ H_{2}X \\ H_{2}$		
<u>Chapter G</u>	<u>boals</u> Understand the two basic types of elimination rxns. Understand competition: substitution vs. elimination.		
 Learn the mechanisms of E1 & E2 rxns - <i>including stereochemistry</i>. Predict/control competition between different reaction pathways. Apply these concepts to the synthesis of organic compounds. 			
Chapter Outline:			
9.1-2 9.3 9.4	The E2 reaction: a CONCERTED elimination rxn The E1 reaction: a STEP-WISE elimination rxn Competition between E1 & E2		
9.5-9.6	Stereochemistry: E1, E2 & importance for cyclic compounds		
[9.7	Kinetic isotope effect can help determine mechanism]		
9.8 9.9-9.12	Competition between substitution & elimination Applications to organic synthesis		

more highly substituted ⇔ more stable

(4)

Identify the major & minor products of this E2 r×n RULE: most stable alkene = major product

Be on the lookout for special cases of stabilization: *e.g.*, conjugation (*i.e.*, resonance delocalized π-systems)

9.3 The mechanism of an E1 reaction

Carbocation ⇒ open shell ⇒ <u>HIGHLY</u> electrophilic !

CATE-LIMITING STEP

stable molecule falls apart!
rxn shows 1st order kinetics
rate = k [alkyl halide]

(9)

9.4 Competition between E2 & E1 rxns Table 9.3 & 5

E2: predictable regio. & stereo.	E1: less control of regio./stereo.	
A one-step mechanism	A stepwise mechanism that forms a carbocation intermediate \leftarrow	
A bimolecular rate-determining step	A unimolecular rate-determining step	
No carbocation rearrangements	Carbocation rearrangements ←	
Reactivity $3^{\circ} > 2^{\circ} > 2$	order: > 1° > methyl Cannot eliminate. ↑ (only 1 C atom!) E2 only	

As with substitutions: concerted rxn inherently faster, so... • Want E2 ? SPEED UP E2 • want E1 ? SLOW DOWN E2 • weak base, protic solvent

(10)

Which compound will undergo faster E2 elimination? (9.6)

(13)

Summary of	competition:	substitution 1	vs. elimination
------------	--------------	----------------	-----------------

Substrate	S _N 2 <i>vs.</i> E2 C	oncerted	S _N 1 <i>vs.</i> E1	Step-wise
Table 9.6	High [] of good Nu / strong B in aprotic solvent		Poor Nu in protic	/ weak B solvent
40.004	<u> </u>			
1° RX	Substitution	Want E? ⇒ bulky B	neither	
2° RX	вотн	Want E? ⇒ bulky B, ↑ T	вотн ((no control)
3° RX	Elimination		вотн ((no control)

(15)

Which pathways would occur under these conditions?

9.9 Substitution & elimination rxns in synthesis Classic use of S_N^2 reaction: TO PREPARE ETHERS

Williamson ethe	er synthesis				
	R— <mark>Br</mark> + alkyl halide	R—O ⁻ alkoxide ion	$\rightarrow R - et$	<mark>D—R</mark> + Bi her	Ē
 Alkoxides are 	easily & clear	nly made by	treating RO	H with:	
sodium metal: <i>OR</i>	ROH + No	$a \rightarrow RO^{-} +$	Na⁺ + ½ H ₂	(redox rxn)
sodium hydrid	e: ROH + No	$aH \rightarrow RO^{-} +$	Na⁺ + H₂	(acid-base r	'xn)
 Versatile: can use either of 2 combinations of alkyl halide & alkoxide whichever favours the desired S_N2 rxn more (over E2) 					
CH ₃ CH ₂ CH ₂ Br + propyl bromide	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ butoxide ion	$O^{-} \longrightarrow CH_{3}C$	H ₂ CH ₂ OCH ₂ CH butyl propyl eth	₂ CH ₂ CH ₃ + B er	r ⁻
CH ₃ CH ₂ CH ₂ CH ₂ E butyl bromide	r + CH ₃ CH ₂ CH ₂ propoxide io	$_{2}O^{-} \longrightarrow CH_{3}C$	H ₂ CH ₂ OCH ₂ CH butyl propyl eth	₂ CH ₂ CH ₃ + B	r ⁻
More	e important if o	one alkoxide i	s bulkier P	oorer Nu	

To synthesize an ether: see best results if...

• provide the less hindered group via the alkyl halide use bulkier one as alkoxide; otherwise & C's backside is too hindered...

	CH ₃	CH3	
$CH_3CH_2Br + C$	$CH_3 CO- \longrightarrow Br-$	+ CH ₃ COCH ₂ CH ₃	$+ CH_2 = CH_2$
Not bulky Easily attacked via backside	ĊH ₃ Bulky base, so will still get some alkene	$\dot{C}H_3$ Desired ether	Some E2 side product (t-BuOH too)

Compare to results if do rxn the other way around:

$\begin{array}{c} CH_{3}\\ CH_{3}CH_{2}O^{-} + CH_{3}CBr \longrightarrow Br-\\ Not bulky, CH_{3}\\ but still will & Too hindered!\\ not be able to & Not reactive\\ reach backside & at all via S_{N}2! \\ of the \delta^{*}C \end{array}$	CH ₃ + CH ₃ C=CH ₂ + CH ₃ CH ₂ OH Won't get ANY of the desired ether! (a good way to make this alkene though!)
--	--

(19)

To efficiently synthesize an <u>alkene</u> via loss of HX:

• use the most hindered alkyl halide possible

EXAMPLE: If we want to prepare propene in the lab: CH₃CH=CH₂ • Dehydrohalogenate 2-bromopropane *or* 1-bromopropane?

A good route to the alkene: (hindered halide, plus strong base even better if use strong BULKY base)

A good route to an alcohol: (less hindered halide, OH- as Nu):

$$\begin{array}{cccc} CH_3CH_2CH_2Br &+ &HO^- \longrightarrow &CH_3CH = CH_2 &+ &CH_3CH_2CH_2OH &+ &H_2O &+ &Br^- \\ \mbox{1-bromopropane} & & & \mbox{minor product} & & \mbox{major product} \end{array}$$

(20)

(21)

9.11: Designing a synthesis (& 4.12, 6.12) Synthetic planning & retrosynthetic analysis

Syn the sis \ 'sin(t)-tha-sas \ noun [Gk, fr. Syntithenai to put together]

1.a the composition or combination of parts or elements so as to form a whole b the production of a substance by the union of chemical elements, groups or simpler compounds or by the degradation of a complex compound

c the combining of often diverse conceptions into a coherent whole

2.a deductive reasoning...

"Starting material" = what you start with "SM" "Target molecule" = desired compound

Is there an obvious sequence of rxns that could lead to this product?
if starting material can only undergo 1 type of rxn: start there!
remember the tools at your disposal (rxn types, & regio/stereochem)
often convenient to:

use substitution to switch functional groups
use alkene intermediate to switch locations of groups

Playing with molecular building blocks

BASIC TYPES OF ORGANIC REACTIONS (so far ... more in Organic II)

- 1. Radical halogenation: adds a functional group to alkanes (unreactive!)
- 2. Substitution: change to a different functional group
- 3. Elimination: create a π-bond
- Electrophilic addition: use π-bond to add a new functional group (very helpful for switching funct'nl group positions!)

Mixing & matching these types of rxns can provide a variety of routes to our molecules of interest \rightarrow versatility! (use trial & error to find best pathway!)

(23) MAKE A COMPREHENSIVE SUMMARY OF RXNS!

Designing a synthesis:

(4.12, 6.12, 9.11)

synthetic planning & retrosynthetic analysis

IDEAL GOAL: SYNTHESIZE THE TARGET MOLECULE USING ...

- fewest # steps possible
- highest yield of desired product possible (intermediate steps too)
- simplest / safest / cheapest / fastest rxns possible

OUR GOALS FOR NOW (we are beginners...):

- use chemically reasonable sequence of rxns (desired product = major)
- if will get a mixture of products at any step, say so!
 - ⇒ would have to purify the product before using in next step

PLANNING OUR SYNTHESIS:

1. Compare the SM & target molecule

C skeleton: How do SM & target compare? Any clear "subunits"? **Functional groups**: Any new groups? Any groups present in both?

Choose conditions that won't react with groups that remain unchanged.

- Is there an obvious set of reactions to get from SM to target?
 Try to add very reactive functional groups near the end.
- 3. If there is no obvious forward plan: try to work backwards! "RETROSYNTHETIC ANALYSIS"

(24)

(25)

Proposed synthetic route: (show all reagents & conditions here)

Br

(26)

(28)

FINAL EXAM INFORMATION

Thurs. April 17th, 7-10 pm, CC-408

Exam room: allowed: models (prebuilt), calculator forbidden: cell phones, e-dictionaries, *etc*

Cumulative: will drop midterm if do better on final exam

Format: a few: MC or T/F or circle correct word mostly: explanations drawings predict products/reactants mechanisms synthesis

Samples: <u>http://faculty.concordia.ca/rogers</u> (Teaching, 221) (29)