ORGANIC CHEMISTRY I	CHEM 221 section 01
LECTURE #01	Tues., Sept.6, 2005

Our textbook: P.Y. Bruice, Organic Chemistry, 4th Ed.

Also helpful: S. Eğe, Organic Chemistry, 5th Ed. (on reserve in Vanier Library)

ASSIGNED READINGS:

TODAY'S CLASS: Bruice Ch1: 1.1-1.5

NEXT CLASS: sections 1.6-1.15

(1) http://artsandscience.concordia.ca/facstaff/P-R/rogers

What is organic chemistry?

History:

- Jöns Jakob Berzelius (1807): "Organic compounds" come from living organisms; "inorganic compounds" = minerals
- Friedrich Wöhler (1828): made urea in the laboratory, starting from inorganic compounds

Current definition: Organic chemistry = chemistry of the compounds of carbon Key elements: C, H, N, O Also important: F, Cl, Br, I, S, P (non-metals most common!) & some metals: Si, Li, Na, K, B, Al, Cr, Cu, Zn, Pd, Hg...

What do organic chemists do?

- Study relationship between structures of molecules & their properties and reactions
- Synthesize molecules with desired characteristics: pharmaceuticals, flavourings, pigments, plastics, fabrics...

Why do you need to study organic chemistry?

- To learn how organic matter reacts, and WHY
- To provide a basis for understanding biological processes
- To gain spatial and temporal organizational skills
- To practice thinking logically & solving complex problems
- To learn to recognize trends & extrapolate knowledge to unknowns...

How to study organic chemistry

• Like a language: PRACTICE, & DON'T GET BEHIND.

Verbal communication

TRAIN YOUR MIND:

Read the textbook Learn proper vocabulary Practice writing explanations Practice solving problems

TRAIN YOUR MOUTH: Discuss material with peers Solve problems together Practice explaining verbally

Pictorial communication

TRAIN YOUR EYE:

Interpret chemical drawings See 3D shapes in flat drawings

TRAIN YOUR HAND: Practice drawing in 3D

Practice writing structures Write problems out every time

Learning the general trends and rules will help you minimize memorization & maximize comprehension.

- Too much to try to memorize all!
- Most successful approach = practice.
- Study Guide: use as a tool, not as a crutch.

Chapter 1: Introduction to Organic Chemistry

<u>Chapter Goals</u>

- Review general chemistry principles: structure, bonding
- Expand knowledge & apply to organic compounds
- Review acid/base chemistry
- Expand to understand organic compounds as acids/bases

<u>Chapter Outline</u>: *This week*

1.1-1.2 Atomic structure & electron distribution 1.3-1.4 Types of bonds & representing structures Atomic orbitals 1.5 Introduction to molecular orbital theory 1.6 Bonding: single, double, triple bonds 1.7-1.9 1.10 Bonding in cations, anions, radicals 1.11-1.13 Bonding in simple compounds Summary: Bond lengths, strengths & angles 1.14 Dipole moments of molecules 1.15

Chapter 1: Introduction to Organic Chemistry

<u>Chapter Outline (cont'd)</u>: Next week

- 1.16 Review of acids & bases
- 1.17 Organic acids & bases: $pK_a \& pH$
- 1.18 Effect of structure on pK_a
- 1.19 Introduction to delocalized electrons & resonance7.2-7.5 Understanding & drawing resonance structures
- 7.10 Effect of electron delocalization on pK_a
- 1.20 Effect of pH on structure of organic compounds
- 1.21 Lewis acids & bases

Organic Chemistry: the chemistry of carbon

Н																
2.1			Ele	ectr	rone	zaa [.]	tivi [.]	tv								
Li 1.0	Be 1.5		Kot	tz &	Trei	chel'	s Fig	jure	9.9			B 2.0	C 2.5	N 3.0	0 3.5	F 4.0
Na 0.9	Mg 1.2	977 971 41					N.					Al 1.5	Si 1.8	P 2.1	S 2.5	Cl 3.0
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5
										1						1

Characteristics of Carbon:

- Does not readily give up or accept e⁻s (e⁻s = electrons) WHY?
 - Intermediate electronegativity
 - effective nuclear charge too low to steal e-s
 - effective nuclear charge too high to give away est

 Does readily share e⁻s (*i.e., forms covalent bonds*) with other C atoms & other non-metal atoms

1.1 REVIEW: The Structure of an Atom

An atom consists of:

protons: positively charged, "massive" particles
neutrons: neutral, massive particles
electrons: negative, very light, wave-like particles "cloud"

Element's identity defined by # protons in atom's nucleus:

- Atomic number = # of protons in atom's nucleus
- Mass number = sum of # of protons & neutrons in atom
- Isotopes: atoms with same atomic number but different mass numbers (difference is # of neutrons)
- Atomic weight = average mass of an element's atoms based on natural abundances of isotopes
- Electrons not really particles floating in a cloud
 - \rightarrow such small particles are best described as waves...

1.2: REVIEW: The Distribution of Electrons in an Atom

Quantum mechanics: uses mathematical equations for wave motion to characterize motion of electrons around nucleus

- "Wave functions" (commonly called orbitals) tell us:
 - 1. the energy of an electron
 - 2. the volume of space around the nucleus where that electron is most likely to be found

- If an orbital is closer to nucleus, it has lower energy
- Degenerate orbitals have the same energy

Where are the electrons are in a ground-state atom?

- Identify the element: # protons = # electrons
- Then assign the electron configuration, by following three rules:
- 1. The Aufbau principle: electrons occupy the orbitals with the lowest energy first
- The Pauli exclusion principle: only two electrons can occupy one atomic orbital and the two electrons must have opposite spin
- 3. Hund's rule: electrons will occupy empty degenerate orbitals before pairing up in the same orbital

	TABLE 1.2	The Ground	llest Ato	ms					
	Atom	Name of element	Atomic number	1 <i>s</i>	2 s	$2p_x$	$2p_y$	$2p_z$	3s
1 st row	H He	Hydrogen Helium	$\frac{1}{2}$	↑ ↑			Vale	nce: n=	1
	Li Be	Lithium Bervllium	3	$\begin{array}{c} \uparrow \downarrow \\ \uparrow \downarrow \\ \uparrow \downarrow \end{array}$	↑ ↑		Vale	nce: n=	2
and	B	Boron	5	$ \uparrow \downarrow $	$\uparrow \downarrow \\ \uparrow \downarrow$	$\uparrow \\ \uparrow$	•		
row	N N	Carbon Nitrogen	6 7	$\stackrel{ \downarrow}{\uparrow\downarrow}$	$\uparrow\downarrow$	\uparrow	\uparrow	\uparrow	
	O F	Oxygen Fluorine	8 9	↑↓ ↑↓	↑↓ ↑↓	↑↓ ↑↓	 	$\uparrow \\ \uparrow$	
	Ne	Neon	10	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	
3 rd	Na	Sodium	11	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	$\uparrow\downarrow$	\uparrow
I.OM								Valenc	e: n=:

Remember: identifying the valence shell is important
chemical bonds form such that each atom's valence shell becomes filled (by transferring electrons or by sharing)

1.3: REVIEW: Ionic, Covalent & Polar Bonds

Ionic compounds:

- form when an electropositive element (low electronegativity) transfers electron(s) to an electronegative element
- usually involve metals & nonmetals
- ionic bonds = electrostatic attractions between ions of opposite charge

Covalent Compounds

Covalent bonding: valence e⁻s attracted to 2 nuclei at once e⁻s occupy valence shells of both atoms

 Nonpolar covalent bonds: equal sharing of valence electrons by atoms of equal electronegativity

 Polar covalent bonds: unequal sharing of valence e⁻s between atoms with different electronegativities *e.g.*, HF

Larger difference? → more polar

Important: know <u>relative</u> electronegativities of nonmetals **COMMON ONES:** F > O > N, CI > Br > I, S, C > H

Visualizing electron distribution in molecules: Electrostatic Potential Maps

Why is it useful to picture polarity?

 Electron-rich atoms or molecules are attracted to electron-deficient atoms or molecules
 \$\infty\$ can predict physical & chemical properties!

Polar bonds have a "Dipole moment"

A polar bond has a negative end and a positive end
 → due to unequal distribution of electrons

Table 1.4

C-I

The Dipole Moments of Some

Construction of the second second	Contraction of the first of the
Bond	Dipole moment (D)
н-с	0.4
H-N	1.3
н-о	1.5
H-F	1.7
H—Cl	1.1
H—Br	0.8
н—і	0.4
С-С	0
C—N	0.2
C-O	0.7
C-F	1.6
C-Cl	1.5
C—Br	1.4
-	

1.2

dipole moment = μ = $e \times d$ In units called Debyes, "D"

- e: magnitude of the charge on the atom
- d: distance between the two charges

Note:

- These dipole moments are averages of experimental measured dipoles
- Using electronegativity differences to predict polarity works fairly well, but is not perfect

Suggestion: become familiar with the relative polarities shown here...

1.4 REVIEW & BEYOND: Representation of structure

Lewis structures: include <u>all</u> valence electrons bonding e⁻s: as pair of dots OR as a line nonbonding e⁻s: as a pair of dots (lone pairs)

Lewis structures

Important points to remember:

- add up all valence e⁻s & make bonds to satisfy valences
- Ieft-over e-s left as lone pairs on atoms with higher electronegativity
- make multiple bonds to try to minimize formal charges on atoms
- 1st row elements: MUST obey duet rule
- 2nd row elements: MUST obey octet rule
- 3rd row & below: can exceed octet
- Formal charge = # valence $e^{-s} [\#$ lone pair $e^{-s} + \frac{1}{2}(\#$ bonding $e^{-s})]$

How many lone pairs should each of these atoms have?

Typical ways to draw organic structures

- Kekulé structures: show all bonds but not lone pairs
- Condensed structures: <u>formulas</u> that show connectivity

Table 1.5 Kekulé and Condensed Structures

Kekulé structure

Condensed structures

Repeating CH2 groups can be shown in parentheses.

$$\begin{array}{cccccccc} H & H & H & H & H \\ I & I & I & I & I \\ H - C - C - C - C - C - C - C - H \\ I & I & I & I \\ H & H & H & H \end{array} CH_3CH_2CH_2CH_2CH_3 \quad or \quad CH_3(CH_2)_4CH_3$$

Groups bonded to a carbon can be shown (in parentheses) to the right of the carbon, or hanging from the carbon.

Groups bonded to the far-right carbon are not put in parentheses.

Table 1.5 Kekulé and Condensed Structures

Kekulé structure

Condensed structures

Two or more identical groups considered bonded to the first atom on the left can be shown (in parentheses) to the left of that atom, or hanging from the atom.

An oxygen doubly bonded to a carbon can be shown hanging off the carbon or to the right of the carbon.

1.5 REVIEW: Atomic orbitals

The 1s & 2s Orbitals

Spherical

node shown

The 2p Orbitals

- Dumbbell-shaped
- Opposite <u>mathematical</u> sign on either side of node (shown as +/- or colours)

3 degenerate orbitals in 3 orientations:

ASSIGNED READINGS

BEFORE NEXT LECTURE:

Read: Bruice Ch.1: up to 1.15

Review:

Chem205

- periodic trends
- drawing Lewis structure
- atomic & hybrid orbitals