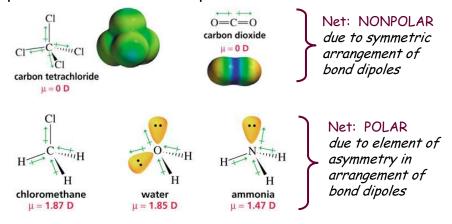
CHEM 221 section 01

LECTURE #03

Tues., Sept.13, 2005

ASSIGNED READINGS:

TODAY'S CLASS:


1.15	Molecular dipole moments
1.16	Review of acids & bases
1.17	Organic acids & bases: pKa & pH
1.18	Effect of structure on pK
1.19	Introduction to delocalized electrons & resonance
7.2-7.5	Understanding & drawing resonance structures

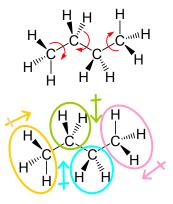
NEXT CLASS: finish Ch.1, plus 7.10

http://artsandscience.concordia.ca/facstaff/P-R/rogers

1.15 Review: Dipole Moment of Molecules

The vector sum of magnitude and direction of individual bond dipole determines overall dipole moment of a molecule

(2)


(1)

Judging polarity of organic molecules

- 1. Consider lone pairs as contributing δ^- character
- 2. Treat C-H bonds as if they were totally nonpolar (even though $\Delta \chi$ = 0.4 and D = 0.4)

WHY?

- Molecules are flexible:
 - → Free rotation occurs about single bonds
 - → Exist in many different "conformations"
- THUS: on average... small regional dipoles caused by C-H bonds end up canceling out over whole molecule !

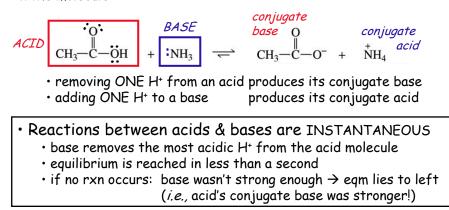
(3)

Identify the polar vs. nonpolar character of... (label δ/δ in net polar regions of molecules only)

Draw intuitively helpful structures, with polarity:

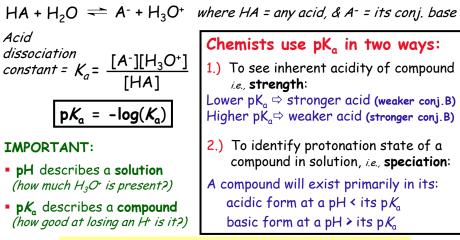
 $(CH_3)_3CCH(OH)CH_3$

 $CH_3N(CH_3)_2$


CH₃(CH₂)₁₄COOH

1.16-1.17: Brønsted-Lowry Acids and Bases

<u>Acids</u> donate a proton


Bases accept a proton

Which is the most acidic H? • the most δ^* H (...in a polar bond) in the molecule • Use a pair of e⁻s *(e.g., lone pair)* to form a covalent to bond to the δ^+ -H

(5)

Measuring acid strength: $K_a \& pK_a$

The stronger an acid is, the weaker its conjugate base

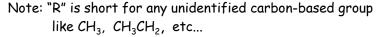
(6)

Predicting if an acid-base rxn will occur...

To efficiently deprotonate another molecule: the attacking base (B:) must be **stronger than** the other molecule's conjugate base...

How to analyze a potential A/B reaction:

- 1. Identify which is more basic (BASE) & which is more acidic (ACID)
- 2. Identify the corresponding conjugate species
- 3. Compare strengths of the 2 bases: BASE, & ACID's conj. Base
 - look up pK_a 's of the acids \Rightarrow think about conj. bases
 - the stronger base = better at accepting H⁺
 - at equilibrium: stronger base preferentially carries the H⁺


Convention: organic chemists use pK_a data (not pK_b) \therefore to discuss base strength, must infer from pK_a of conj.acid

(7)

Acidity & basicity: depend on STRUCTURE

Table 1.8: Approximate pK_a values (see text's back cover for more)

STRONG ACIDS	MODERATELY STRONG	← WEAK	ACIDS →	EXTREMELY WEAK
р <i>К</i> а < 0	р <i>К</i> а ~ 5	р <i>К</i> _а ~ 10	р <i>К</i> _а ~ 15	р <i>К</i> а » 15
H ₃ 0 [⊕] protonated water			H ₂ O water	
⊕ ROH₂ a protonated alcohol			ROH an alcohol	
⊕ОН Ш R ^C ОН	O II R ^C OH	⊕ RNH ₃ a protonated amine		RNH ₂ an amine
a protonated carboxylic acid	a carboxylic acid			RCH3 an alkane

(8)

Acidity & basicity: depend on STRUCTURE

- The stronger the base, the weaker is its conjugate acid (if it's so good at bonding to H*, then it's harder for it to let go...)
- A base deprotonates an acid by forming a covalent bond to H⁺ 1s orbital
 BOTH e⁻s for the bond come from B:
 - Thus: a base will be *stronger* if it REALLY *needs to share* its e^{-s} a base will be weaker if it is quite stable carrying its e^{-s}

What factors decrease basicity? (more stable ⇒ less basic)

- 1.) Diminished electron density Lone pairs on smaller atoms are
 - lone pair on large atom *more basic...*
 - due to inductive effects (e⁻-withdrawing groups)
 - due to resonance (delocalization of electrons)

∫ pairs on same ∫ type of atom, consider these.

To compare lone

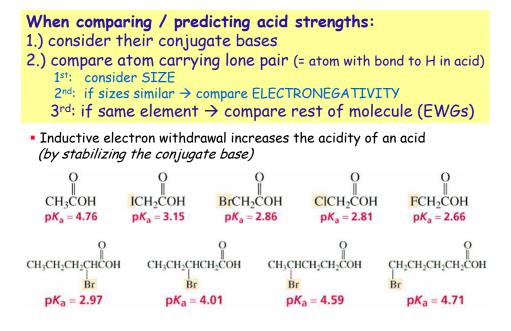
- 2.) Diminished ability to <u>share</u> electrons
 - Ione pair on highly electronegative atom ∫ pairs are on atoms of

Consider this when lone pairs are on atoms of similar size (same row).

acid

(9)

When comparing / predicting acid strengths: 1.) consider their conjugate bases 2.) compare atom carrying lone pair (= atom with bond to H in acid) 1st: consider SIZE When atoms are very different in size, the stronger acid will have its proton attached to the largest atom relative electronegativities: F > Cl > Br > most largest electronegative relative stabilities: $F^- < Cl^- < Br^- <$ most stable relative acidities: HF < HCl < HBr < HIstrongest


(10)

When comparing / predicting acid strengths:

- 1.) consider their conjugate bases
- 2.) compare atom carrying lone pair (= atom with bond to H in acid)
 1st: consider SIZE
 2nd: if sizes similar → compare ELECTRONEGATIVITY
- When atoms are similar in size, the stronger acid will have its proton attached to the more electronegative atom

CH ₃ OH	CH ₃ NH ₂
methanol	methylamine
р <i>К</i> _а = 15.5	р <i>К</i> _а = 40

(11)

When comparing / predicting acid strengths:

1.) consider their conjugate bases

 $\begin{array}{c} O & O \\ H \\ CH_3CO^- & \longleftrightarrow CH_3CO^- \end{array}$

- 2.) compare atom carrying lone pair (= atom with bond to H in acid) 1st: consider SIZE
 - 2nd: if sizes similar \rightarrow compare ELECTRONEGATIVITY
 - 3^{rd} : if same element \rightarrow compare rest of molecule (EWGs)

 4^{th} : \rightarrow compare degree of resonance stabilization

Acetic acid's conjugate base is stabilized by resonance \Rightarrow e- pair is delocalized $pK_a = 4.76$ over many atoms acetic acid

O ∥ CH₃COH

CH₃CH₂OH $pK_a = 15.9$ ethanol

Ethanol's conjugate base is NOT...

(13)

Resonance Contributors and the Resonance Hybrid

Resonance contributors (individual resonance structures) are imaginary, but the resonance hybrid is real

What does the true structure of acetate look like?

ASSIGNED READINGS

BEFORE NEXT LECTURE:

Read:	rest of Bruice Ch.1
Review:	Chem206: acids & bases – conjugate pairs – pH, pK _a , pK _b – reactions of acids & bases – effect of structure on acidity

(15)