CHEM 221 se	ction 01
-------------	----------

slide 5 now fixed..

LECTURE #05 Tues., Sept.20, 2005

ASSIGNED READINGS:

TODAY'S CLASS:

1.20Effect of pH on structure of organic compounds1.21Lewis acids & bases

& resonance structures...

NEXT CLASS: Ch.2: 2.1 - 2.9

http://artsandscience.concordia.ca/facstaff/P-R/rogers

(1)

Larger # resonance structures (resonance contributors) ⇒ more extensive delocalization ⇒ greater stabilization

How do we know how many to draw? Will they all contribute the same to the resonance hybrid?

Rules for Drawing Resonance Contributors: Part 1

- 1. The molecule's σ -framework stays the same: atoms do not move, & their σ -bonds don't change.
- 2. Only π -electrons and lone-pair electrons move.
- 3. The total number of e^{-s} in the molecule does not change.
- 4. The numbers of paired e-s and unpaired e-s do not change.
- 5. The total charge on the molecule does not change.

Remember why the e⁻s move: being delocalized via overlapping p-orbitals

(3)

If the atom carrying lone pair were to **rehybridize** so it had an unhybridized p-orbital, could delocalization then occur?

Note: "push arrows" $(1 \rightarrow = 2e^{-})$ to indicate path e⁻s must "travel" to make transitions between your localized resonance structures

So: which of these will be the stronger base?

Resonance contributors are obtained by moving π electrons toward a positive charge:

$$CH_{3}CH = CH - CHCH_{3} \iff CH_{3}CH - CH = CHCH_{3} \iff Fixed!$$

$$CH_{3}CH = CH - CHCH_{3} \implies CH_{3}CH - CH = CHCH_{3} \iff Fixed!$$

$$CH_{3}CH = CH - CHCH_{3} \implies CH_{3}CH - CH = CHCH_{3} \implies CH_{3}CH = CHCH_{3} \implies CHCHCH_{$$

Aside: where could a carbocation like this come from?

(5)

Resonance contributors are obtained by moving π electrons toward a positive charge:

$$CH_{3}CH=CH-CH=CH-CH_{2} \longleftrightarrow CH_{3}CH=CH-CH=CH_{2}$$

$$\overset{\delta+}{CH_{3}CH=-CH=-CH=-CH=-CH_{2}} \overset{(+)}{CH_{3}CH-CH=CH-CH=-CH_{2}}$$

resonance hybrid

More resonance contributors ⇒ more stable hybrid

Resonance contributors also obtained by moving π -electrons toward a π -bond (an sp² atom!):

Resonance contributors also obtained by moving lone pair e⁻s toward a π -bond (an sp²-atom):

(7)

BUT: Never move p-electrons toward an sp³ atom:

Features that decrease the predicted stability of a contributing resonance structure ...

Same idea...

- 1. An atom with an incomplete octet ("open shell")
- A negative charge that is not on the most electronegative atom
- 3. A positive charge that is not on the most electropositive atom
- 4. Charge separation

(9)

(10)

Electrons prefer to move toward the more electronegative atom (as you might expect...)

(11)

(12)

(13)

Identify the most acidic hydrogen in...

From Chem206: polyprotic acids

- the most acidic H on <u>each</u> molecule is lost before any molecule loses its next-acidic H
- THUS: if we add "1 equivalent" of base, only the most acidic H is lost

Find a strong enough base to deprotonate ...

Back inside cover of Bruice:

Approximate pKa Values See Appendix II for more detailed information.

	+OH	1	0	
protonated carbonyl groups	RCOH	α -carbon (aldehyde)	RCHCH	
protonated alcohols	ROH H > <0	a-carbon (ketone)	H O I RCHCR	~20
protonated water	нон Н		н Q	
	о 1	α -carbon (ester)	RCHCOR	-25
carboxylic acids	RCOH -5		н́ о	
protonated aniline	+ ArNH ₃	α -carbon (amide)	RCHCN(CH ₃) ₂	~30
protonated amines	RNH3	amines	RNH ₂	~40
phenol .	ArOH	alkanes	RCH ₃	~50
alcohols	ROH -15			
water	H ₂ O			

(15)

Find a strong enough base to deprotonate ...

CH₃NH₃

(See Appendix II)

Compound	pK _n	Compound	pK _a	Compound
\bigtriangledown		\square		Q
X	8.0	⟨ ⟩−ŇH ₃	10.7	CH ₃ CH
н н		and the	10.7	(CH ₃) ₃ COH
H2NNH3	8.1	(CH ₃) ₂ NH ₂	10.7	9
0		\cap		CH ₃ CCH ₃
сн,соон	8.2	TN	11.1	O L
CHICHINO	8.6	н н		CH ₃ COCH ₂ CH ₃
0 0		CH3CH2NH3	11.0	HC=CH
CH CCH CCH	8.0	\square		CH ₃ C=N
ungeenjeerny	0.5	+N	11.3	Ŷ
HC=N	9.1	нн		CH ₃ CN(CH ₃) ₂
m .		HPO42-	12.3	NH ₃
TN	9.3	CF3CH2OH	12.4	\square
н н		0 0		ĥ
но-С	9.4	CH3CH2OCCH2COCH2CH3	13.3	CH ₃ NH ₂
		HC=CCH2OH	13.5	\frown
ŇH4	9.4	<u>o</u>		сн,
IOCH.CH.NH.	0.5	H2NCNH2	13.7	\frown
Q		CH3		\bigvee
Neu Co-	0.0	CH3NCH2CH2OH	13.9	CH2=CHCH3
hjsch2c0	9.8	CH ₃		CH2=CH2
—он	10.0	N NH	14.4	\bigtriangledown
		CHON	15.5	CH4
н3-ОН	10.2	HO	15.7	CH3CH3
ICO1	10.2	CH-CH-OH	16.0	
CH ₃ NO ₂	10.2	0		Also commo
	10.2	CH3CNH2	16	$H_{\alpha} = nK =$
Н2N-ОН	10.3			ng pra
CH3CH2SH	10.5	CCH ₁	16.0	conj.buse -
CHANNH	10.6			used as No
0 0		(N)	-17	
TH COLLOR	10.7	Н		
injeengeoengeng	10,1			
TH ₁ NH ₃	10.7			

Compound	pK _a
0	
СН,СН	17
(CH ₃) ₃ COH O	18
СН3ССН3	20
CH3COCH2CH3	24.5
HC=CH	25
$CH_3C = N$	25
0	
CH ₃ CN(CH ₃) ₂	30
NH ₃	36
$\langle \mathbf{p} \rangle$	36
CH ₃ NH ₂	40
сн,	41
\bigcirc	43
CH2=CHCH3	43
CH2=CH2	44
\bigtriangledown	46
CH	50
CH3CH3	50

p*K*a = 35 .base = H⁻ d as NaH

(16)

1.21 The Lewis concept of acids & bases

- A more general, MECHANISTIC, way of thinking
- Explains H⁺ transfer reactions (Brønsted-Lowry theory) & many others

IMPORTANT: Lewis acid-base $(\delta^+ - \delta^-)$ interactions let you predict the outcome of nearly all reactions!

(17)

Organic chemists often use Lewis acids to react with e⁻-rich centres \rightarrow distorts the molecule's polarity \rightarrow can enhance or entirely change the molcule's reactivity \rightarrow see more soon (Ch.4)...

ASSIGNED READINGS

BEFORE NEXT LECTURE:

Read:	Ch.1: 1.20-1.21	
	Ch.7: 7.2-7.5, 7.10	

Practice: predicting relative acidity/basicity

(19)