CHEM 221 section 01

LECTURE #06

Thurs., Sept.22, 2005

ASSIGNED READINGS:

TODAY'S CLASS:

1.21	Lewis acids & bases
2.1-2.7	Naming organic compounds

NEXT CLASS: Ch.2: continue on ...

http://artsandscience.concordia.ca/facstaff/P-R/rogers

(1)

Common Lewis acids & Lewis bases

Example: Carbocations react with Lewis bases

Depending on how the molecules collide, & other structural factors (*basicity, size, accessibility...see later...*), the rxn will occur in one of 2 ways:

(3)

Chapter 2: Introduction to Organic Compounds

Chapter Goals

To prepare ourselves for learning about chemical reactions

- Learn to draw & name common organic compounds nomenclature
- Understand structure & physical properties molecular interactions
- Understand the flexible nature of molecules conformations

Chapter Outline:

- 2.1-2.7 Nomenclature of common organic compounds alkanes, alkyl halides, ethers, alcohols, amines
- 2.8-2.9 Structures & physical properties of common compounds
- 2.10-2.15 Conformations of alkanes & cycloalkanes

Alkanes: hydrocarbons containing only single bonds

Hydrocarbons = compounds containing only C & H

Alkane general formula: C_nH_{2n+2}

Table 2.1	Nomenclature and	d Physical Prope	erties of Straight-Chain A	lkanes	
Number of carbons	Molecular formula	Name	Condensed structure	Boiling point (°C)	Memorize: prefixes
1	CH ₄	methane	CH ₄	-167.7	101 1-12 63
2	C_2H_6	ethane	CH ₃ CH ₃	-88.6	
3	C ₃ H ₈	propane	CH ₃ CH ₂ CH ₃	-42.1	Straight-chain
4	C_4H_{10}	butane	CH ₃ CH ₂ CH ₂ CH ₃	-0.5	olkener ene
5	$C_{5}H_{12}$	pentane	CH ₃ (CH ₂) ₃ CH ₃	36.1	aikanes are
6	$C_{6}H_{14}$	hexane	CH ₃ (CH ₂) ₄ CH ₃	68.7	commonly
7	C ₇ H ₁₆	heptane	CH ₃ (CH ₂) ₅ CH ₃	98.4	called
8	C8H18	octane	CH ₃ (CH ₂) ₆ CH ₃	127.7	n-alkanes
9	C9H20	nonane	CH ₃ (CH ₂) ₇ CH ₃	150.8	(<i>n</i> for <i>normal</i>)
10	$C_{10}H_{22}$	decane	CH ₃ (CH ₂) ₈ CH ₃	174.0	
11	$C_{11}H_{24}$	undecane	CH ₃ (CH ₂) ₉ CH ₃	195.8	
12	C12H26	dodecane	CH ₃ (CH ₂) ₁₀ CH ₃	216.3	

An "alkyl group" = an alkane-type chain bonded to something else *e.g.*, methyl (CH₃—), pentyl (CH₃CH₂CH₂CH₂CH₂—) *etc...*

(6)

For chains of \geq 4 carbons: branched isomers also possible

- Isomers = different molecules with same molecular formula
- Constitutional isomers: same molecular formula, different connectivity (different atoms connected to each other)

(7)

Drawing isomers: start with straight chain, then add braches

Fry C₇H ₁₆ :	<i>7C's straight</i> CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CI	Heptane (sy H ₂ CH ₃ or <i>n</i> -hept	stematic IUPAC name) tane (common name)
6C's + 1 CH ₃ substituent	CH ₃ CHCH ₂ CH ₂ CH ₂ CH CH ₃ 2-methylhexa isoheptar	3 CH ₃ CH ne or ne 3-n	$_{2}^{2}CHCH_{2}CH_{2}CH_{3}$ CH_{3} nethylhexane
5C's + 1 CH ₂ CH substituent	✓ ₃ CH ₃ CH ₂ CHCH ₂ CH ₃ ↓ CH ₂ CH ₃ 3-ethylpentane	Note: no ne isomers have	c oheptane , since <u>3</u> e a C bonded to 4C's.
5C's + 2 CH ₃ substituents	$\begin{array}{c} CH_3\\ \\ CH_3CCH_2CH_2CH_3\\ CH_3\\ \textbf{2,2-dimethylpentane}\\ CH_3CH-CHCH_2CH_3\\ \\ CH_3CH-CHCH_2CH_3\\ CH_3\\ CH_3\\ \textbf{2,3-dimethylpentane}\\ \end{array}$	CH ₃ CH ₃ CH ₂ CCH ₂ CH ₂ CH ₃ CH ₃ ,3-dimethylpentane CH ₃ CHCH ₂ CHCH ₃ CH ₃ CH ₃ CH ₃ 2,4-dimethylpentane	$4C's + 3 CH_3$ substituents $CH_3 CH_3$ $- H_3 CH_3$ $CH_3 CH_3$ $- CHCH_3$ CH_3

We'll learn to name these systematically soon...

(8)

Important: A compound can have more than one name, but a name must specify <u>only</u> one compound

Two systems of nomenclature:

1. Common names

- Historical
- Not necessarily based on structure
- Too many to memorize for all known compounds...but...
- Still in use for common compounds
 - on chemical bottles...
 - need to know motifs: normal, iso, neo

2. Systematic names (IUPAC)

- Unambiguous names
- Based on structure
 - Length of carbon chain
 - Bonding in chain
 - Positions of substituents
 - etc.
- Once you learn the rules, you can figure out names as required (less memorizing)
- First: learn alkyl groups & functional groups

(9)

First: different types of C's & H's

DESCRIBE CARBON ATOMS: Based on # of C's the C is bonded to

		1 ⇔ primary 2 ⇔ secondary 3 ⇔ tertiary	1° 2° 3°
		4 ⇔ quaternary	4°
a primary carbon	a primary carbon	a secondary carbon a ter	tiary carbon CH ₃
CH ₃ CH ₂ CH ₂ CH ₂ -	CH ₃ CH <mark>C</mark> H ₂ -	– CH ₃ CH ₂ CH–	CH ₃ C-
a butyl group	an isobutyl group	a sec-butyl group	a tert-butyl group

(10)

First: different types of C's & H's

DESCRIBE HYDROGEN ATOMS: Based on type of C the H is bonded to

We will see: this is related to common names of some types of compounds

(11)

2.1 Nomenclature of Alkyl Substituents

Note: the *iso, sec, tert* names are commonly used but they do not appear in proper systematic names

Substituent (hydrocarbon-based group) (symbol, abbreviation & name)			Class of compounds		Comments
-(CH ₂) _n CH ₃ or branched	—R	alkyl	C _n H _{n+2}	Alkanes	See Table 2.2 for structures & common names of alkyl groups
—CH₃	—Me	methyl)		
-CH ₂ CH ₃	—Et	ethyl			
-(CH ₂) ₂ CH ₃	—Pr	propyl	Must be	come very familiar	
-CH(CH ₃) ₂	<i>—i-</i> Pr	isopropyl	groups		
-(CH ₂) ₃ CH ₃	—Bu	butyl			
	— <i>t</i> -Bu	tert-butyl]]		
-CH=CH ₂		vinyl	R ₂ C=CR ₂	Alkenes	Discussed later
–C≡CH		acetylide	R <i>C</i> ≡CR	Alkynes	\int in Chem221.
	Ph	phenyl	C₀H₅R	Aromatic hydrocarbons	Chemistry discussed in later courses.

(13)

Compounds are classified based on reactivity

FUNCTIONAL GROUPS = centres of reactivity in compounds

- basis for classifying compounds
- functional groups contain:
 - 1.) heteroatoms

atoms that are not carbon or hydrogen more electronegative: result in δ^*/δ^- centres have nucleophilic / basic lone pairs

2.) multiple bonds

 π -electron density is exposed & polarizable very attractive to electrophiles (see Ch.3,4)

Function (symbol	al group & name)	Class of compounds (based on functional gp)		Descriptors		Examples
_×	Halide	R—X	Alkyl halides	1° 2° 3°	RCH ₂ -X R ₂ CH-X R ₃ C-X	
—он	Hydroxyl	R—OH	Alcohols	1º 2º 3º	RCH ₂ -OH R ₂ CH-OH R ₃ C-OH	
-NH ₂	Amino	R—NH ₂	Amines	1° 2° 3°	R-NH ₂ R ₂ NH R ₃ N	
-0-	Оху	R—O—R	Ethers	Symmetric Asymmetric	R-O-R R-O-R'	
0 C	Carbonyl	O II R—C—R	Ketones; if ≥1 R=H: Aldehydes	O II Acyl R—C—X Ac	halides <i>OR</i> id halides	Chemistry of these types
о ॥ _с_он	Carboxyl	O II R—C—OH	Carboxylic acids	O II R—C—OR Esters	O II R—C—NR ₂ Amides	of compounds (including IUPAC names) discussed in
—C≡N	Cyano	R—C≡N	Nitriles			
-NO ₂	Nitro	R—NO ₂	Alkyl nitrates			
(15)						

Naming common compounds

"Common names" of compounds: alkyl group + compound type

CH ₃ OH
methyl alcohol
CH ₃ I
methyl iodide

CH₃CH₂NH₂ ethylamine CH₃CH₂OH ethyl alcohol CH₃CH₂CH₂Br propyl bromide CH₃CH₂CH₂NH₂

propylamine

CH₃CH₂CH₂CH₂CH₂Cl butyl chloride

CH₃CH₂CH₂CH₂OH butyl alcohol

Systematic names: one long word, made up of 3 main parts:

Based on length continuous C chain PLUS: parent chain preceded by position of su	PREFIX - of longest ("parent") descriptor ns & names ibstituents	 INFIX – Based on C-C bond type in backbone 	 SUFFIX Based on most important functional group Conventions: treat halides simply as substituents on chain
<u>Substituents</u> : alkyl halo hydroxy amino (alkylamino, di/trialkylamino) alkoxy	<u>Parent</u> : meth- eth- but- pent- hex- hept- oct- non- dec-	<u>Infix</u> : single only -an- ≥1double -en- ≥1triple -yn-	 ethers named as alkoxy substituents on chain <u>Suffix</u>: Alkanes: -e Alcohols: -ol Amines: -amine Carboxylic acids: -oic acid

(17)

Compound		See Bruice Table 2.
class	Systematic IUPAC name	Common name
Alkyl halide	Substituted alkane	Alkyl group to which halogen is attached, plus halide
	CH3CH2FCH2CH2CH3 2-fluoropentane	<i>←sec</i> -pentyl fluoride <i>(Bad name is non-unique!)</i>
Ether	Substituted alkane	Alkyl group attached to oxygen, plus ether
	CH ₃ CH ₂ OCH ₂ CH ₃ ethoxyethane	\leftarrow diethyl ether
Alcohol	Functional group suffix is -ol	Alky/group to which OH is attached, plus alcohol
	(CH ₃) ₃ COH 2-methyl-2-propanol	← t-butanol
Amine	Functional group suffix is -amine	Alkyl groups attached to N, plus amine
	$CH_3CH_2NHCH_3$ N-methylethanamine	\leftarrow ethylmethylamine

But: what about when the chains are more complicated?

Systematic naming: a summary of the strategy 1.) Find longest continuous chain of carbons: PARENT CHAIN • if 2 or more of same length: one with more substituents = parent chain 2.) Number C's in the chain in direction that puts substituents on C's with lowest #'s possible 3.) Write substituents in alphabetical order (with position # 1st for each) followed by parent chain name • if \geq 1 identical substituent: use di, tri, tetra... to indicate quantity e.g., #,#,#-tri_ but note: prefixes are not included in alphabetization except: iso, neo (non-systematic!) & cyclo ARE included 4.) MORE DETAILS: regarding direction of numbering • if multiple substituents: # so the position #'s are as low as possible (the #s themselves, not their sum) • if same in both directions: substit. 1st in alpha. listing gets lower #

(19)

2.2 Nomenclature of Alkanes

1. Determine the number of carbons in parent hydrocarbon

2. Number the chain so that the substituent gets the lowest possible number

1 2 3 4 5 CH ₃ CHCH ₂ CH ₂ CH ₃ CHCH ₃	1 2 3 4 5 6 7 8 CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	CH ₃
CH ₃	CHCH ₃	CH ₃ CHCH ₂ CH ₂ CH ₃
2-methylpentane	CH ₃ 4-isopropyloctane	common name: isohexane systematic name: 2-methylpentane
	Better if you also systematically name the <i>i</i> -Pr substituent: 4-(1-methylethyl)octane	

(20)

3. Number the substituents to yield the lowest possible numbers in the name of the compound

CH₃CH₂CHCH₂CHCH₂CH₂CH₃ CH₃ CH₂CH₃ 5-ehtyl-3-methyloctane not 4-ethyl-6-methyloctane because 3<4

(substituents are listed in alphabetical order)

4. Assign the lowest possible numbers to all substituents

(21)

5. When both directions lead to the same lowest number for one of the substituents, the direction is chosen that gives the lowest possible number to one of the remaining substituents

6. If the same number is obtained in both directions, the first group receives the lowest number

CI CH₃CH₂CHCH₃ Br 2-bromo-3-chlorobutane not 3-bromo-2-chlorobutane CH₃CH₂CHCH₂CHCH₂CHCH₂CHC₁CH₃ CH₃CH₃CH₂CHCH₂CHCH₂CHC₁CH₃ CH₃ 3-ethyl-5-methylheptane not 5-ethyl-3-methylheptane

(22)

7. In the case of two hydrocarbon chains with the same number of carbons, choose the one with the most substituents

8. Certain common nomenclatures are ok in the IUPAC system

(23)

ASSIGNED READINGS

BEFORE NEXT LECTURE:

Read: Ch.2 up to 2.8

Practice: naming organic compounds