CHEM 221 section 01

LECTURE #11

Tues., Oct.11, 2005

ASSIGNED READINGS:

TODAY'S CLASS:

2.14-15	Conformations of substituted cyclohexanes
3.1	Alkenes: Formulae & degree of unsaturation
3.2	Nomenclature
3.3	Structure
3.4	E,Z system of nomenclature

NEXT CLASS: rest of Ch.3, Ch.4...

http://artsandscience.concordia.ca/facstaff/P-R/rogers

(1)

2.14 Conformations of disubstituted cyclohexanes

Naming convention: describes relative orientation of substituents to distinguish between *geometric isomers* = isomers with same connectivity of atoms, but different spatial orientations

cis-1-bromo-2-chlorocyclohexane

trans-1-bromo-2-chlorocyclohexane

(2)

(3)

cis-1-tert-butyl-3-methylcyclohexane

(5)

Trans-fused cyclohexane rings are more stable than cis-fused rings (note: would have to break C-C bonds to change geometry of ring fusion...)

(6)

Chapter 3: Alkenes, Thermodynamics & Kinetics

Chapter Goals

Learn details about alkenes, plus fundamental principles governing rxns

- Learn to draw & name alkenes structure & nomenclature
- Review principles of energetics & rxn rates thermodynamics, kinetics

Chapter Outline:

- 3.1-3.5 Structure, properties & nomenclature of alkenes
- 3.6 How alkenes react using curved arrows to show mechanisms
- 3.7 Thermodynamics & kinetics

(7)

3.1 Molecular formula & degree of unsaturation • a "saturated" hydrocarbon = $C_n H_{2n+2} \Rightarrow$ no rings, no C=C's "unsaturated" hydrocarbons: do not have max. # H's per C \Rightarrow missing 2H for every 1 π -bond or ring \Rightarrow an "element of unsaturation" = a π -bond or a ring $CH_3CH_2CH_2CH_2CH_3$ $CH_3CH_2CH_2CH_2CH_2$ an alkane an alkene a cyclic alkane a cyclic alkene C5H12 C5H10 C5H10 C₅H₈ $C_n H_{2n+2}$ C_nH_{2n} $C_n H_{2n}$ C_nH_{2n-2} Handy trick to help deduce a structure from a formula: Elements of unsaturation (degree of unsaturation) = total # of π -bonds & rings $=\frac{1}{2}(2C+2-H)$ where $C = \#C \& H = \#H_{...}$ For compounds containing heteroatoms too: • count halogens as hydrogens (use up 1 bond to C) • ignore oxygen (can add O to chain without changing # C/H) • count N as half a C (midchain: -CH₂- units, vs. -NH- units...)

3.2 Nomenclature of Alkenes

Functional group (centre of reactivity) = C-C double bond

Typical IUPAC systematic naming method:

- 1. Find longest continuous chain containing the C=C bond ⇒ use "-en-" infix to denote C=C in parent chain
- Number chain to give the C=C the lowest # possible (unless...see #3) 2. \Rightarrow the # given to the C=C refers to the 1st C of the C=C
- Specify geometry about the C=C bond: cis/trans, or E/Z (later...) 3.
- 4. When other functional groups present (-OH, -NR₂...), the group that defines the name's suffix determines #ing direction
- 5. Typical rules about: naming substituents first, alphabetically no number needed if C=C between C1 & C2 no # for cyclic monoalkenes; C=C defines C1&2 # in direction that minimizes #s

HO

(9)

(11)

(12)

Relative stabilities: Steric strain in alkenes

Trans isomers generally more stable than cis \rightarrow less steric strain

This difference in stability becomes important when we consider reactions that FORM alkenes...

Which one will form preferentially?

 \rightarrow depends on rxn's mechanism, & relative stabilities!

Cis-Trans interconversion plays a crucial role in vision

Doesn't follow simple stability rules

- cis isomer is stabilized in specific environment within opsin protein
- isomerizing to *trans* results in changes in protein's conformation
- · causes a signal to be sent...

Another aspect of alkene chemistry in our lives:

- fatty acids (in fats) have long unsaturated alkyl chains
- *cis* geometry is typical; *trans* alkenes unusual in natural fats
- · different physical properties, & processed differently by body...

(15)

3.5 The E,Z system of alkene nomenclature

Cis & trans are helpful <u>relative</u> terms, but only useful when 'importance' of substituents is obvious. What about... \rightarrow

IUPAC "E/Z system" of naming is less ambiguous H especially for highly substituted alkenes (many R groups on C=C)

1. Assign priorities to substituents (by atomic #) on the $sp^2 Cs$

- 2. Consider relative positions of the higher priority groups on the two different C's (*i.e.*, across the p-bond):
 - same side ⇒ "Z" from *zusammen* German for together ("zis" ?!)
 - opposite ⇒ "E" from *entgegen* German for opposite

(Z)-1-bromo-2-chloropropene

(E)-1-bromo-2-chloropropene

(17)

ASSIGNING PRIORITY: the Cahn-Ingold-Prelog rules

 Assign priorities based on atomic number (Z) of connecting atom: higher Z ⇒ higher priority

e.g., CI > O > N > C > H

- For isotopes (identical atomic number): higher priority to isotope with larger mass T (³H) > D (²H) > H
- If two identical atoms are attached to the sp² carbon: compare next atom in each chain until tie is broken -CH₂CH₂Br > -CH₂CH₃ > -CH₃
- A double bond counts as 2 bonds for both atoms involved Similarly, triple bonds counted as 3 bonds each...

(19)

(20)

ASSIGNED READINGS

BEFORE NEXT LECTURE:

Read: rest of Ch.3

Practice: Naming alkenes (especially E/Z)

(21)