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CHEM 221  section 01   

LECTURE #12 Thurs., Oct.13, 2005

ASSIGNED READINGS:
TODAY’S CLASS:   

NEXT CLASS:   Ch.4…

http://artsandscience.concordia.ca/facstaff/P-R/rogers

3.6 How alkenes react:  curved arrows to show mechanism
3.7 Review:  Thermodynamics & kinetics

Midterm exam:  Tues.Oct.25 during class
Ch.1, 7.2-7.5, 7.10, 2, 3.1-3.5



(2)

Alkenes react with electrophiles (i.e., e− pair acceptors / LEWIS ACIDS)
• common electrophiles:  H+ (i.e., δ + H’s), metal cations, boron compounds…

3.6  How alkenes react:  electrophilic addition
Electrons in π-bonds are very “exposed”
• not held tightly between nuclei like σ -bond e−s
• very polarizable
• quite reactive!

alkenes behave as if “electron-rich”

IN ELECTROPHILIC ADDITION REACTIONS:
• an electrophile (a δ + centre) reacts with the alkene’s π-electrons
• end up with a small molecule “Y-Z” adding across the double bond
• many types of molecules do this, all via similar mechanism (next slide)
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STEP 1:
alkene
π-electrons
attack 
electrophile

STEP 2:
nucleophile
attacks
carbocation
intermediate

carbocation
intermediate
(electrophile)

halide
anion
(Nu:)

General mechanism of electrophilic addition
using curved “ ” arrows to show movement of electron pairs
arrows always start at e--rich centre & move to e--deficient centre

halide anion
= Nu:

carbocation
= E+

Product 
= alkyl halide

polarity shows 
us this H is 
electrophilic

π-electrons
are nucleophilic

“Arrow pushing” is the typical way chemists show reaction mechanisms.
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Curved arrows always go from Nu: to E+

Arrows start at an e--rich centre & move to an e--deficient centre
Electron pairs do the attacking 
Empty (or e--deficient looking) orbitals receive the e- pair 

“nothing” cannot attack:  arrows only start at bonds or lone pairs

the 2 π-electrons attack

the C nucleus
does not attack …although that C ends up using the π-e-s in its 

new bond to H…which leaves the π-bond’s 
other C atom with an empty p orbital (cationic)

Nu:
E+

In 3.6:  see plenty of examples of correct vs. incorrect usage of arrows
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3.7  Thermodynamics and kinetics:  REVIEW
THERMODYNAMICS
recall:   ∆Go = ∆Ho - T∆So

and    ∆Go = -RTlnKeq

So:  what will our rxn mixture be like when 
it reaches EQUILIBRIUM:
• large, negative ∆Go

rxn:  product-favoured
• large, positive ∆Go

rxn:  reactant-favoured

‡ ‡
Fig.3.3
Reaction
coordinate
diagrams:
show free E
of reactants,
products, AND
transition state (‡)

Enthalpy relates to 
stabilization due to bonds
∆Ho estimated using bond 
energies (formed – broken…)

Entropy relates to disorder
∆So estimated by comparing 
degree of movement (P – R)

R

P
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KINETICS:  rxn rate depends on temperature, because of E barrier
Reaction rate = (rate constant) x (concentration dependence)

1st order:   rate = k[reactant]
2nd order:  rate = k[reactant]2 or rate = k[reactant A][reactant B]
depends on the reaction’s mechanism…

Activation energy, Ea :  also depends on the mechanism!
E needed to reach ‡ (some bonds partially broken, others forming…)
E of collided reactants must exceed Ea for rxn to occur

Arrhenius’ equation:   k = Ae-Ea/RT

• Ea is a purely enthalpic quantity:   
considers bond strengths only

• the A term includes entropic factors
To include entropic factors in one term:

“free energy of activation”, ∆G‡

∆G‡ = ∆H‡ – T∆S‡

But:  Thermodynamics alone says nothing about reaction rates 
Do we have sufficient thermal energy for rxn to reach eqm?
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Why this information is useful to an organic chemist
Because rxn rates depend on “getting over the energy barrier”:

anything that stabilizes rxn’s transition state will make rxn faster
choose solvent that interacts better with ‡ lower ‡’s E ↓ ∆G‡

IMPORTANT:  Composition of rxn mixture AT EQUILIBRIUM 
depends on relative thermodynamic stabilities of reactants vs. products.
At equilibrium, the more stable species will dominate. WHY?

Consider an exergonic rxn:  products more stable than reactants
IMPLIES:  lower activation barrier for fwd rxn vs. reverse rxn

rate constants: kfwd > krev
rate faster in forward direction until build up large [product]
by the time ratefwd = raterev, have more products than reactants

If both the forward & reverse rxns are “thermally accessible”:
system can reach equilibrium (steady state with ratefwd=raterev)

EXERGONIC RXN ENDERGONIC RXN
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A closer look at the electrophilic addition mechanism:
Transition States (‡)  versus   Intermediate

Transition state = the most unstable moment during the reaction step
some bonds partially broken, other bonds partially formed
exists so transiently, no other species could collide with it…

Intermediate = “stable” species that can collide with other species
have only full bonds (no partially formed bonds)
but if have an open-shell atom (e.g., carbocation) very reactive!

intermediate

intermediate

transition state
of step 1

transition state
of step 2
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Electrophilic addition = a two-step mechanism (∴2 ‡’s)
via a carbocation intermediate

‡1

‡2

Which step here 
is slower?  

larger ∆G‡

smaller rate   
constant, k

slower rxn
For electrophilic
additions:  
RLS = step 1, 
attack of alkene
on electrophile

To speed up rxn:
choose solvent
that stabilizes ‡1

Fig.3.6:  Rxn coordinate diagram for rxn
of 2-butene with HBr
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ASSIGNED READINGS

BEFORE NEXT LECTURE:  

Read:  rest of Ch.3

Review:  equilibrium constants & thermodynamics

reaction rates & kinetics


