CHEM 221 section 01

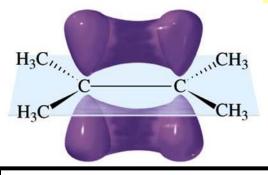
LECTURE #12

Thurs., Oct.13, 2005

Midterm exam: Tues.Oct.25 during class Ch.1, 7.2-7.5, 7.10, 2, 3.1-3.5

ASSIGNED READINGS:

TODAY'S CLASS:

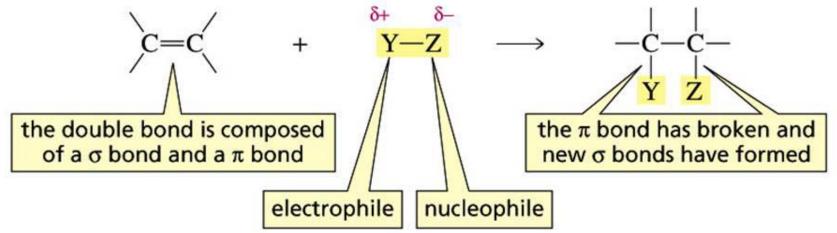

3.6 How alkenes react: curved arrows to show mechanism

3.7 Review: Thermodynamics & kinetics

NEXT CLASS: Ch.4...

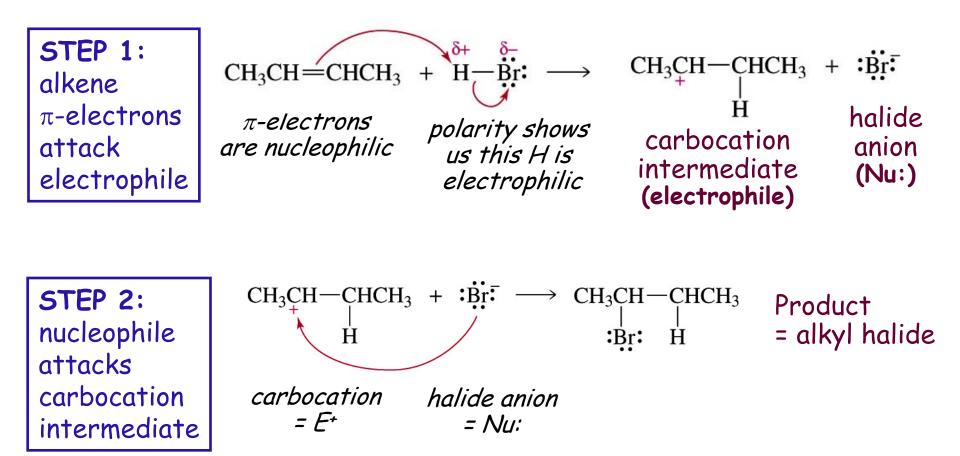
http://artsandscience.concordia.ca/facstaff/P-R/rogers

3.6 How alkenes react: electrophilic addition


Electrons in π -bonds are very "exposed"

- not held tightly between nuclei like σ -bond e⁻s
- very polarizable
- quite reactive!

→ alkenes behave as if "<u>electron-rich</u>"


Alkenes react with electrophiles (*i.e.*, e^- pair acceptors / LEWIS ACIDS) • common electrophiles: $H^+(i.e., \delta^+ H's)$, metal cations, boron compounds...

- IN ELECTROPHILIC ADDITION REACTIONS:
- an electrophile (a δ^+ centre) reacts with the alkene's π -electrons
- end up with a small molecule "Y-Z" adding across the double bond
- many types of molecules do this, all via similar mechanism (next slide)

General mechanism of electrophilic addition

using curved " \rightarrow " arrows to show movement of electron pairs arrows <u>always</u> start at e⁻-rich centre & move to e⁻-deficient centre

"Arrow pushing" is the typical way chemists show reaction mechanisms.

Curved arrows <u>always</u> go from Nu: to E⁺

Arrows start at an e⁻-rich centre & move to an e⁻-deficient centre *Electron pairs do the attacking* Nu:

- Empty (or e⁻-deficient looking) orbitals receive the e⁻ pair E⁺
- "nothing" cannot attack: arrows only start at bonds or lone pairs

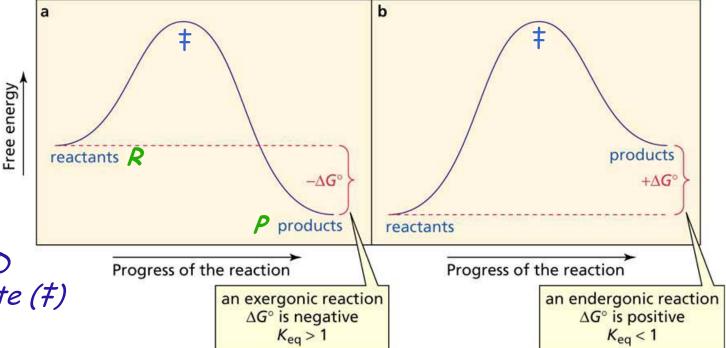
CH₃CH=CHCH₃ + H $-\ddot{B}\dot{r}$: \rightarrow CH₃CH-CHCH₃ + : $\ddot{B}\dot{r}$: H correct the 2 π -electrons attack

$$CH_{3}CH = CHCH_{3} + H - \dot{B}\dot{r}: \longrightarrow CH_{3}\dot{C}H - CHCH_{3} + :\dot{B}\dot{r}:$$
the *C* nucleus
does not attack incorrectalthough that *C* ends up using the π -e-s in its
new bond to H...which leaves the π -bond's
other *C* atom with an empty p orbital (cationic)

In 3.6: see plenty of examples of correct *vs.* incorrect usage of arrows

3.7 Thermodynamics and kinetics: REVIEW

THERMODYNAMICS


• recall: $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ and $\Delta G^{\circ} = -RTIn K_{eq}$

So: what will our rxn mixture be like when it reaches EQUILIBRIUM:

- large, negative $\Delta G^{\circ}_{r \times n}$: product-favoured
- large, positive $\Delta G^{\circ}_{r \times n}$: reactant-favoured

 Enthalpy relates to stabilization due to bonds
 ΔH^ρ estimated using bond
 energies (formed - broken...)
 Entropy relates to disorder
 ΔS^ο estimated by comparing
 degree of movement (P - R)

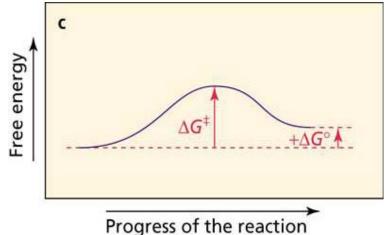
Fig. 3.3 Reaction coordinate diagrams: show free E of reactants, products, AND transition state (‡)

But: Thermodynamics alone says nothing about reaction rates Do we have sufficient thermal energy for rxn to reach eqm?

KINETICS: rxn rate depends on temperature, because of E barrier

Reaction rate = (rate constant) x (concentration dependence)

1st order: rate = k[reactant] 2nd order: rate = k[reactant]² or rate = k[reactant A][reactant B] depends on the reaction's mechanism...

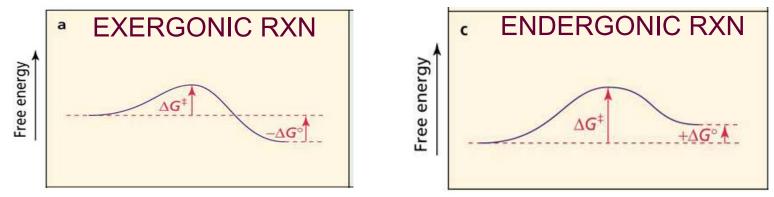

Activation energy, E_a : also depends on the mechanism!

- E needed to reach ‡ (some bonds partially broken, others forming...)
- E of collided reactants must exceed E_a for rxn to occur Arrhenius' equation: $k = Ae^{-Ea/RT}$
 - E_a is a purely enthalpic quantity: considers bond strengths only
 - the A term includes entropic factors

```
To include entropic factors in one term:

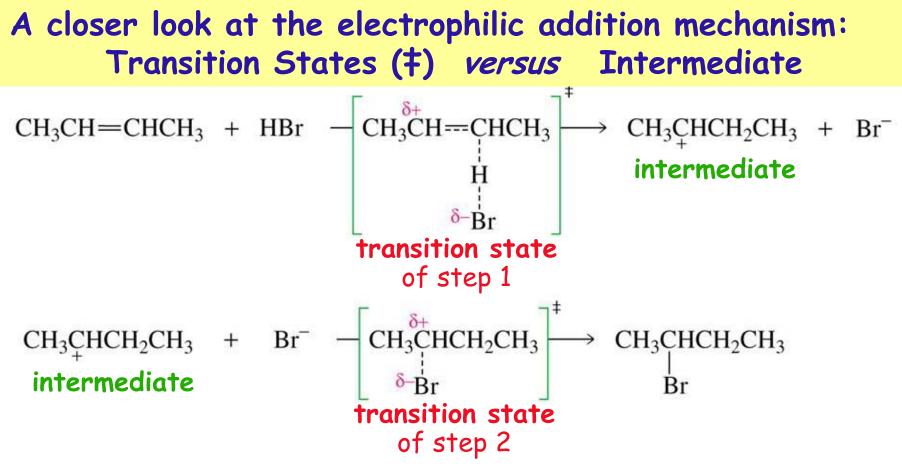
"free energy of activation", \Delta G^{\ddagger}

\Delta G^{\ddagger} = \Delta H^{\ddagger} - T\Delta S^{\ddagger}
```



Why this information is useful to an organic chemist

Because rxn rates depend on "getting over the energy barrier":

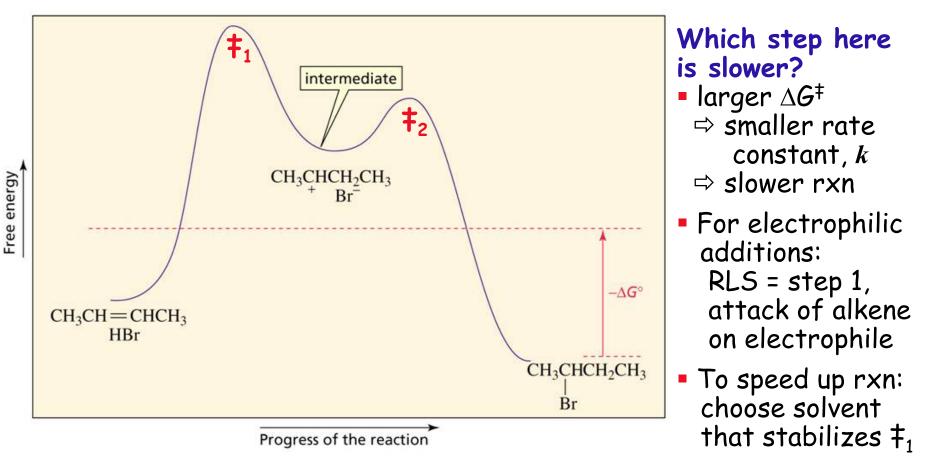
- anything that stabilizes rxn's transition state will make rxn faster
- choose solvent that interacts better with $\ddagger \Rightarrow$ lower $\ddagger's E \Rightarrow \downarrow \Delta G^{\ddagger}$


If both the forward & reverse rxns are "thermally accessible":

system can reach equilibrium (steady state with rate_{fwd}=rate_{rev})

IMPORTANT: Composition of r×n mixture AT EQUILIBRIUM depends on relative thermodynamic stabilities of reactants vs. products. At equilibrium, the more stable species will dominate. WHY?
Consider an exergonic r×n: products more stable than reactants IMPLIES: lower activation barrier for fwd r×n vs. reverse r×n ⇒ rate constants: k_{fwd} > k_{rev}

- ⇒ rate faster in forward direction until build up large [product]
- \Rightarrow by the time rate_{fwd} = rate_{rev}, have more products than reactants


Transition state = the most unstable moment during the reaction step
some bonds partially broken, other bonds partially formed
exists so transiently, no other species could collide with it...

Intermediate = "stable" species that can collide with other species
 have only full bonds (no partially formed bonds)

• but if have an open-shell atom (e.g., carbocation) ⇒ very reactive!

(8)

Electrophilic addition = a two-step mechanism (...2 ‡'s) via a carbocation intermediate

Fig.3.6: Rxn coordinate diagram for rxn of 2-butene with HBr

ASSIGNED READINGS

BEFORE NEXT LECTURE:

Read: rest of Ch.3

Review: equilibrium constants & thermodynamics

reaction rates & kinetics