CHEM 221 section 01

LECTURE #14

Thurs., Oct.20, 2005

Midterm exam: Tues.Oct.25 during class Ch.1, 7.2-7.5, 7.10, 2, 3.1-3.5

ASSIGNED READINGS:

TODAY'S CLASS: Sections 4.7-4.10

NEXT LECTURE: finish Ch.4, start Ch.5

http://artsandscience.concordia.ca/facstaff/P-R/rogers

(1)

4.7 Addition of halogens: "halogenation"

NET RESULT: Add X-X across the C=C bond ⇒ vicinal dihalide product

MECHANISM: polarizable X-X acts as $\delta^{+}X-X\delta^{-}$

1.) C=C bond attacks "X+" ⇒ cyclic halonium ion intermediate

- 2.) nucleophile (X-) attacks halonium ion
 - \Rightarrow X ends up bonded to the more highly substituted C

(2)

(3)

(4)

What products would these reaction conditions yield?

Ask yourself:

 π -bond attacks E's δ^+ atom...

- 1) What is the electrophile? ...& E ends up on least substituted C
- 2) Does a carbocation result? -> If yes: form most stable cation possible
 - 1st: via regiochemistry of E addition
 - 2nd: via rearrangement(s)
- 3) What is the nucleophile? → Nu reacts with electrophilic carbon (of highest concentration) (be sure to check if solvent is nucleophilic!)

(5)

4.9 Addition of borane: "hydroboration-oxidation" anti-Markovnikov addition of water

(6)

Mechanism of hydroboration: *B is the electrophile*

Boron has lower electronegativity than hydrogen...BUT more importantly: in trivalent boron compounds: B has open valence shell!

THUS: the BORON is the electrophilic part of BH_3 highly reactive towards lone pairs & <u> π -electrons</u>!!

MECHANISM OF HYDROBORATION:

1.) C=C bond attacks boron (δ^+) at same time as δ^- H attacks sp² C \cdot a concerted (1-step) process

thus: H & B on same side of C=C ⇒ syn addition

Follows usual rule: electrophile adds to the less highly-sub'd C

• WHY? Steric demand of borane group!

 $\begin{array}{cc} \longrightarrow & R \longrightarrow BH_2 \\ & \text{an alkylborane} \end{array}$

2.) & subsequent steps: oxidation by H₂O₂, OH⁻, H₂O removes boron group & replaces with OH (you are not responsible for the details here)

(7)

Stereochemistry of Hydroboration-Oxidation *i.e., relative* orientation of groups in the products (see more in Ch.5)

- Always syn addition
- In 1st step: H-B can add to either side of C=C initially, so get <u>both</u> possible syn products
- subsequent steps: do not change the orientation of the groups thus: stereochemistry dictated by 1st step

You are not responsible for reproducing this...

...but seeing the full mechanism will help you understand the reaction

(9)

& then: subsequent oxidation steps (1 bonds to 0): OH replaces boron to yield alcohol

You are <u>not</u> responsible for reproducing this... ...but it might help you understand how we end up with an alcohol!

(10)

Key synthetically useful features of hydroboration:

1.) adds H-OH with anti-Markovnikov regiochemistry

2.) avoids rearrangements of molecule (no carbocation int.)

 \rightarrow predictable, clean regiochemistry (good product control!)

 $\begin{array}{c} CH_{3} \\ CH_{3}CHCH = CH_{2} \\ \textbf{3-methyl-1-butene} \end{array} \xrightarrow{\begin{array}{c} \textbf{1. BH_{3}/THF} \\ \textbf{2. HO^{-}, H_{2}O_{2}, H_{2}O \end{array}} \xrightarrow{\begin{array}{c} CH_{3} \\ H_{3}CHCH_{2}CH_{2}OH_{2$

THUS:

major product would be 2-methyl-2-butanol ...3-methyl-2-butanol as a minor product Hydroboration product ⇒ no rearrangement ⇒ anti-Markovnikov ⇒ syn addition of H & OH (syn not noticeable here since rxn did not generate stereochemistry)

(11)

(13)

4.10 Addition of Radicals to Alkenes: Anti-Markovnikov addition of H-Br

So far: Hydrohalogenation = route to alkyl halides Br Markovnikov $CH_3CH_2CH = CH_2 + HBr -$ CH₃CH₂CHCH₃ addition 1-butene 2-bromobutane product RADICAL HYDROBROMINATION: opposite regiochemistry Anti- $\xrightarrow[hv \text{ or } \Delta]{}$ CH₃CH₂CH₂CH₂Br Markovnikov $CH_3CH_2CH = CH_2 + HBr$ 1-bromobutane 1-butene addition!

Choose reaction conditions that yield desired regiochemistry ! a) HBr at RT in the dark ⇒ Markovnikov addition

 b) HBr with heat or light ⇒ anti-Markovnikov addition (+peroxide)

(14)

Mechanism: Addition of Radicals to Alkenes

1.
$$\overrightarrow{ROHO} \overrightarrow{OrA} 2 \overrightarrow{ROH} + \overrightarrow{Br}$$
:
2. $\overrightarrow{ROH} + \overrightarrow{H} - \overrightarrow{Br}$: $\longrightarrow \overrightarrow{ROH} + \overrightarrow{Br}$:
4. $\overrightarrow{ROH} + \overrightarrow{Br}$:
5. Form the 1st reactant radicals
6. Good radical initiators
= organic peroxides (ROOR)
weak O-O bond homolytically
cleaves under heat or light

(15)

2. stereochemistry: racemization (if chiral) \rightarrow see this in Ch.5

(17)

Use of peroxide <u>only</u> changes the regiochemistry of HBr addition, *not* HCl or HI addition

A radical process will occur instead of the non-radical mechanism ONLY if *both* of the propagation steps are exothermic:

- propagation steps: (a) are sometimes exothermic, but not always
 (b) use radicals
 - (b) use radicals AND produce radicals
- termination steps (consuming only radicals) are always exothermic & fast
 they compete with desired propagation steps

& can use up the radicals before endothermic propagation occurs

$Cl \cdot + CH_2 = CH_2 \longrightarrow ClCH_2\dot{C}H_2$	△H° = 63 - 82 = -19 kcal/mol (or -79 kJ/mol)
$\begin{array}{rcl} \text{CICH}_2\dot{\text{C}}\text{H}_2 \ + \ \text{HCl} \ \longrightarrow \ \text{CICH}_2\text{CH}_3 \ + \ \text{Cl} \end{array}$	$\Delta H^{\circ} = 103 - 101 = +2 \text{ kcal/mol (or +8 kJ/mol)}$
$Br + CH_2 = CH_2 \longrightarrow BrCH_2\dot{C}H_2$	∆H° = 63 – 69 = –6 kcal/mol (or –25 kJ/mol)
$\mathrm{Br}\mathrm{CH}_{2}\dot{\mathrm{C}}\mathrm{H}_{2}\ +\ \mathrm{HBr}\ \longrightarrow\ \mathrm{Br}\mathrm{CH}_{2}\mathrm{CH}_{3}\ +\ \mathrm{Br}\cdot$	△H° = 87 – 101 = –14 kcal/mol (or –59 kJ/mol)
$I \cdot + CH_2 = CH_2 \longrightarrow ICH_2\dot{C}H_2$	$\Delta H^{o} = 63 - 55 = +8 \text{ kcal/mol (or +33 kJ/mol)}$
$ICH_2\dot{C}H_2 \ + \ HI \ \longrightarrow \ ICH_2CH_3 \ + \ I\cdot$	∆H° = 71 – 101 = -30 kcal/mol (or -126 kJ/mol)

(18)

ASSIGNED READINGS

BEFORE NEXT LECTURE:

Read: rest of Ch.4

Practice: writing mechanisms & predicting products

(19)