CHEM 221 section 01

LECTURE #18 Thurs., Nov.03, 2005

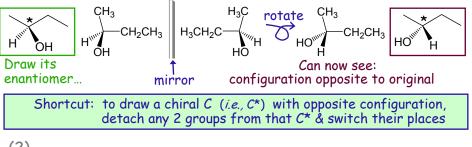
ASSIGNED READINGS:

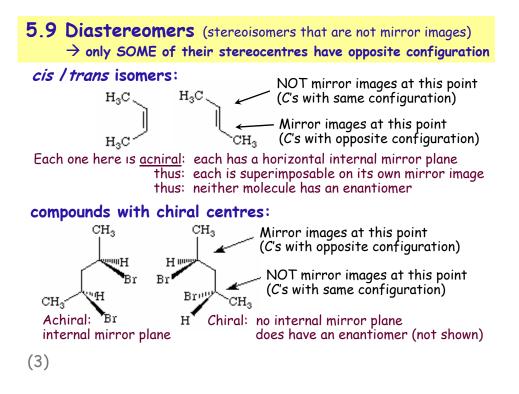
TODAY'S CLASS: continue Ch.5

NEXT LECTURE: finish Ch.5

http://artsandscience.concordia.ca/facstaff/P-R/rogers

(1)

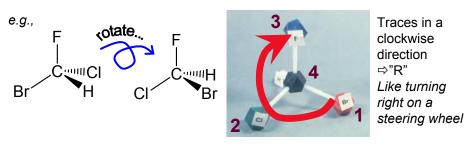

5.5 Drawing enantiomers

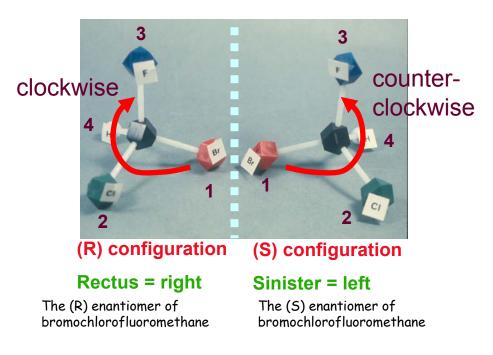

perspective drawings: use dashes & wedges to show 3D geometry


practice: drawing & rotating molecules on paper & in your head...

To draw a molecule's enantiomer:

- 1. Draw molecule as a perspective drawing
 - only need to show all 3D information for *asymmetric* atoms
- Imagine reflecting molecule in a mirror
 configuration of EVERY asymmetric atom will be inverted
- 3. Check: is this really a different compound?
 - original & mirror image are only enantiomers if they are *nonsuperimposable* mirror images of each other





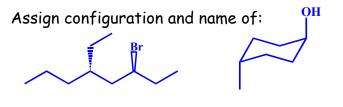
5.6 Assigning configuration of chiral centres: "the R,S system"

- 1. Assign priority to the 4 groups attached to the stereocenter. using Cahn-Ingold-Prelog rules: higher atomic # ⇒ higher priority
- 2. Picture molecule with LOWEST priority group aimed AWAY from you
- Trace other groups in a circle: highest → lowest priority: Clockwise = (R) for rectus, Latin for right or Counterclockwise = (S) for sinister, left

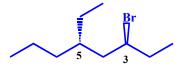
(5)

5.6 & 5.11: IUPAC naming of stereoisomers

Geometric isomery: defined in front of name by using cis/trans (Z/E for double bonds), followed by a dash:



Configuration of chiral carbon atoms: noted using R/S letters after position number of chiral atom, in brackets followed by dash:



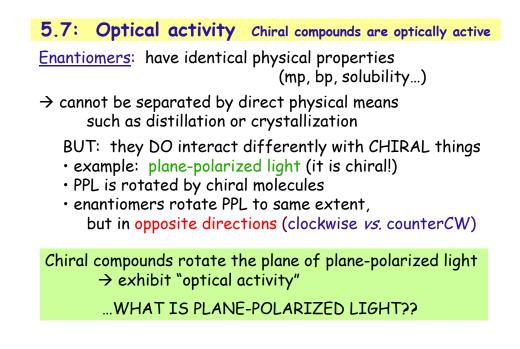
If more than one chiral carbon, just use a comma to separate the number-letter combinations *(see next example...)*

(7)

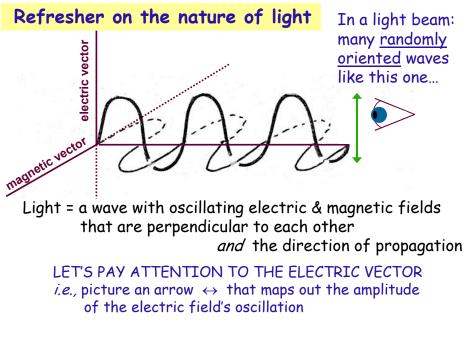
How many stereoisomers do these compounds have?

(3S, 5S)-3-Bromo-5-ethyloctane

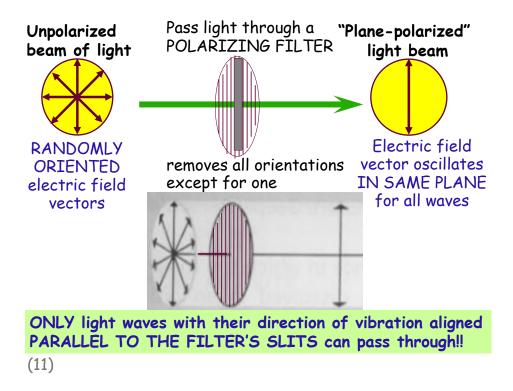
2 chiral centres

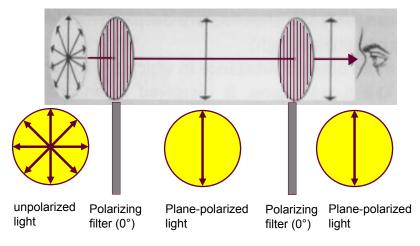

Thus:

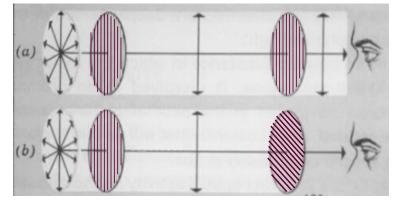
2² = 4 stereoisomers possible (2 pairs of enantiomers)



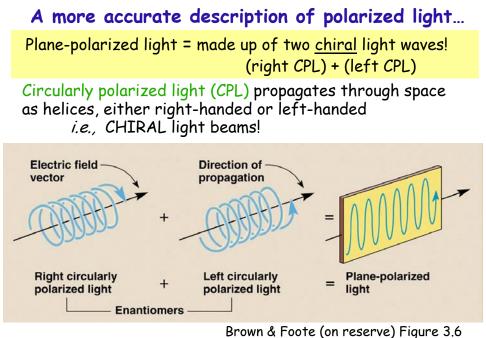
OH


- No chiral centres
- Internal plane of symmetry
 ⇒ achiral
 ⇒ deag not have an emention
 - ⇒ does not have an enantiomer
- But: groups could be *cis*...
- Thus: 2 stereoisomers possible (diastereomers; geometric...)


(9)


(10)

If we have two polarizers in a row... ...light passes through if they are aligned (both at 0°)



If <u>not</u> aligned: less light passes through...

NO LIGHT passes if polarizers are "crossed" (oriented at 90° to each other)

(13)

Remember: right hands fit better into right gloves... *i.e.*, interactions of chiral species are hand-specific

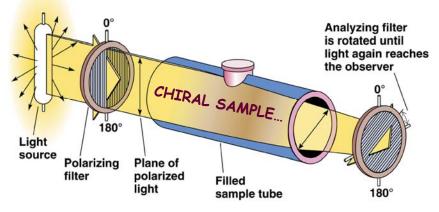
When plane-polarized light interacts with chiral molecules, rotation of the plane of polarization occurs.

- right CPL & left CPL are each chiral...
- interact to different extents with chiral molecules!
- result: one CPL gets slowed down more than other
 ⇒ net rotation of polarization plane

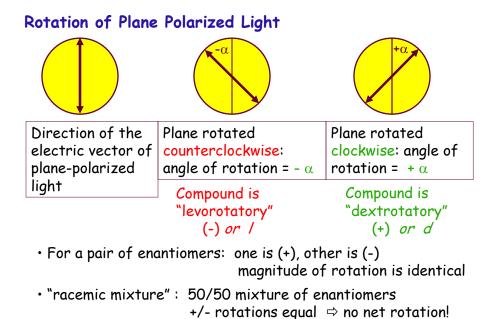
Clockwise rotation: (+) "dextrorotatory" species (d or D) e.g., (d)-methionine

Counterclockwise: (-) "levorotatory" species (/ or L) e.g., (l)-methionine

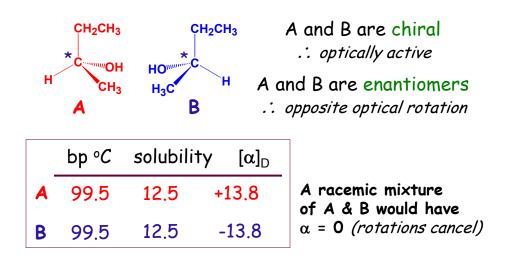
A polarimeter:


- used to measure rotation of polarized light
- substance of interest placed between two polarizers

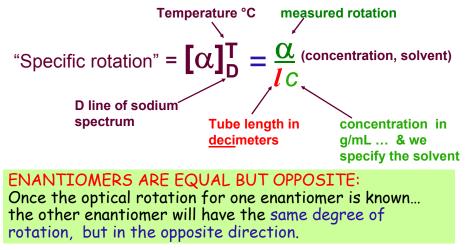
(15)

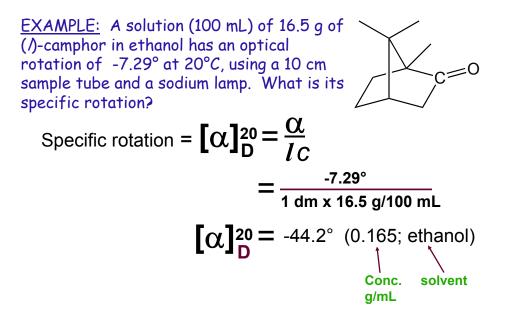

USING A POLARIMETER

chiral sample rotates plane ⇒ less light passes...


- → YOU turn one polarizer until appears bright again
- \rightarrow angle polarizer rotates = sample's optical rotation (α)

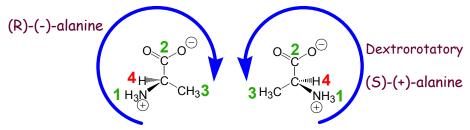
Similar: Bruice Fig.5.2


(17)


Quantifying optical rotation: an extensive property...

<u>How much</u> the plane of polarized light is rotated depends on: nature of compound & its concentration

temperature, length of sample tube, wavelength of the light


(19)

Knowing the absolute configuration (R/S) of a compound does NOT let us predict the sign of the optical rotation, d(+) or l(-)

Likewise, absolute configuration CANNOT be determined from the sign of the optical rotation.

BUT: if sign of rotation of one enantiomer IS known... the other enantiomer <u>will</u> have opposite sign.

You cannot predict the rotation direction, but once you DO know it, it can be specified in the compound's name...

(21)

5.8 Optical purity & enantiomeric excess

Enantiomers rotate PPL in opposite directions

thus: net rotation depends on how much of each is present

A racemic mixture (racemate):

contains equal #s of molecules of two enantiomers ("optical isomers")

shows NO optical rotation.

WHY? ⇒ equal concentration of molecules that rotate plane polarized light clockwise and counterclockwise.

In a non-racemic mixture of optical isomers:

- one enantiomer "A" is present in larger amount (excess)
- rotation due to enantiomer B will be cancelled out by A's rotation
- ⇒ net rotation observed: due to the excess quantity of A

"Enantiomeric excess" *(*e.e.) or "optical purity"

<u>Measured specific rotation of the mixture</u> x 100 = % enantiomeric Specific rotation of the pure enantiomer excess Example: Describe the composition of a particular mixture of enantiomers, with measured optical rotation: $[\alpha] = 10^{\circ}$ if optically pure (+) enantiomer has: $[\alpha] = 20^{\circ}$

THUS: (10° / 20°) × 100 = 50% optical purity *or,* 50% enantiomeric excess

measured rotation has + sign \Rightarrow means (+) enantiomer is in excess!

What is the ratio of optical isomers present in the mixture?

What is the true meaning of optical purity / enantiomeric excess?

If 50% is optically pure, then the remaining 50% is racemic (+/- or d/l)

	<u>%d</u>	%1	٦	
50 % d l	25	25	L	\Rightarrow d: l = 75 : 25
50 % d	<u>50</u>		Í	= 3:1
	75 7	total d	J	0.1

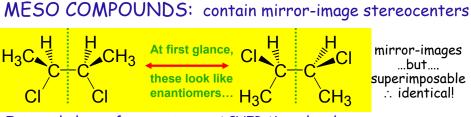

(23)

5.10: Meso Compounds

Picture a molecule with two asymmetric centres that have identical groups on them...

Depending on their configurations, the molecule overall can have an INTERNAL plane of symmetry.

→ Molecule overall is ACHIRAL called a "meso compound"

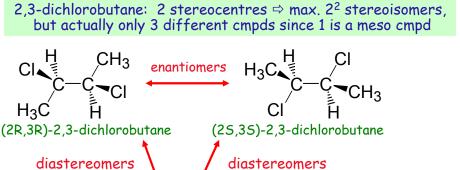


Brown & Foote Fig. 3.4 (textbook on reserve) Nice pictures in Bruice too

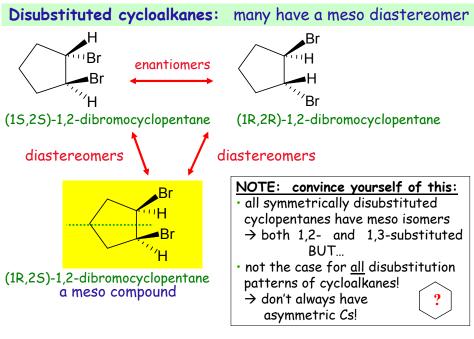
IMPLICATION: optically inactive

stereocentres in SAME molecule are mirror images

- ⇒ cancel out each other's optical rotation
- ⇒ like a racemic mixture inside one molecule!



Internal plane of symmetry \Rightarrow ACHIRAL molecule



Aside: in 5.9, see "erythro" vs. "threo" to describe isomers with >1 C* If can rotate to have similar groups on same side of chain: erythro If config. Makes similar groups remain on opposite sides: threo BUT YOU ARE NOT STRICTLY RESPONSIBLE FOR THIS!

(25)

(27)

ASSIGNED READINGS

BEFORE NEXT LECTURE:

- Read: Ch.5 up to 5.11
- **Practice:** drawing & naming stereoisomers