CHEM 221 section 01

LECTURE #20 Thurs., Nov.10, 2005

ASSIGNED READINGS:

TODAY'S CLASS: finish Ch.5, start Ch.9

NEXT LECTURE: start Ch.10

http://artsandscience.concordia.ca/facstaff/P-R/rogers

(1)

5.19 Stereochemistry of electrophilic additions

Stereochemical outcome depends on the fact that...

- Alkene π -bonds are planar
 - \Rightarrow Equal probability of rxn at either "face" of π -bond
 - Always have possibility of forming > 1 stereoisomer (must analyze products to see if molecules are actually same)
- Carbocation & radical intermediates have an open-shell sp² atom
 - Attack is equally likely from both faces...
- Possibility of forming 1 or 2 new chiral centres, depending on rxn...

To predict stereochemistry, consider nature of rxn's mechanism:

- 1. Concerted attack of E⁺ & Nu⁻: e.g., hydroboration, (hydrogenation)
 - no intermediate formed
 - stereochemistry results only from: syn addition to alkene

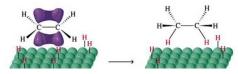
OR

- 2. Step-wise attack of E⁺ & Nu⁻: e.g., rest of electrophilic additions
 - intermediate forms, then reacts with nucleophile
 - E atom in intermediate can be attacked from either face

GENERAL STRATEGY: always analyze alkene reactant 1st

- if an sp² C has 3 different groups: if is 1 step away from being a chiral center (i.e., is "prochiral")
- if not: addition will not result in formation of chiral centres
- ⇒ Do not memorize outcomes: just picture mechanism happening!

Stereochemistry of Hydroboration-Oxidation


$$H_3C$$
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3
 H_3C
 CH_3

- Concerted attack of π e^{-s} on B-H bond: Always syn addition
- In 1st step: H-B can add to either side of C=C initially, so get <u>both</u> possible syn products
- Subsequent steps to replace B by OH: stereochemistry defined is 1st step is unaffected (configurations of carbon atoms remain unchanged) ⇒ described as proceeding with "retention of configuration"

(3)

1B. Stereochemistry of hydrogenation

- Alkene "docks" onto metal surface: Always syn addition
 - since H atoms replace bonds between Cs & metal surface
- note: 2 new stereocentres may be formed...

- Asymmetric alkene
- 2 C's one step away from being chiral centres ("prochiral")
- 2 new chiral centres
- · syn add'n fixes relative config's
- ⇒ enantiomers

$$\begin{array}{c} \textit{cis-2,3-dideuterio-2-pentene} \end{array} \underbrace{\begin{array}{c} \text{CH}_3\text{CH}_2 \\ \text{D} \end{array} }^{\text{CH}_3\text{CH}_3} \underbrace{\begin{array}{c} \text{CH}_3\text{CH}_2 \\ \text{Pt} \end{array} }^{\text{CH}_3\text{CH}_2} \underbrace{\begin{array}{c} \text{H} \\ \text{H} \\ \text{CH}_3 \end{array} \underbrace{\begin{array}{c} \text{CH}_2\text{CH}_3 \\ \text{CH}_3 \end{array} \underbrace{\begin{array}{c} \text{CH}_2\text{CH}_3 \\ \text{H} \end{array} }^{\text{CH}_2\text{CH}_3}$$

(4)

2A. Stereochemistry of hydrohalogenation

- H⁺ can bond to either side of alkene ⇒ 1st C is racemized
- Nucleophile can attack planar carbocationic centre from either side
 ⇒ 2nd C also racemized!

THUS: can yield 4 stereoisomers!

$$\begin{array}{c} \text{CH}_3\text{CH}_2 & \text{CH}_2\text{CH}_3 \\ \text{H}_3\text{C} & \text{CH}_3 & \text{HCI} \\ \text{H}_3\text{C} & \text{CH}_3 & \text{CH}_3 & \text{CH}_2\text{CH}_2\text{CH}_3 \\ \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \end{array} \\ \begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_3 & \text{CH}_3\text{CH}_2\text{CH}_3 \\ \text{H}_3\text{C} & \text{CH}_3 & \text{CH}_3 & \text{CH}_3 \\ \end{array} \\ \begin{array}{c} \text{CH}_2\text{CH}_3 & \text{CH}_3 & \text{CH}_3\text{CH}_2\text{CH}_3 \\ \text{H}_3\text{C} & \text{CH}_3 & \text{CH}_3 & \text{CH}_3\text{CH}_3 \\ \end{array} \\ \begin{array}{c} \text{CH}_3\text{CH}_3\text{C} & \text{CH}_3\text{CH}_3\text{CH}_3\text{CH}_3 \\ \text{Empty p orbital} & \text{CH}_3\text{CH}_$$

H₃CH₂C_{IIII}

H₃C[¶]

(5)

Recall descriptive terms:

If it looks like both groups added to the same side of C=C: "syn addition"

If...added to opposite sides of C=C: "anti addition"

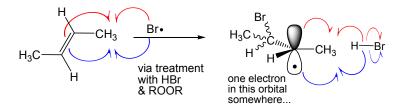
:ċi;

H₂CH₃C ^

H3C

"NCH2CH3

CH₃


CH₂CH₃

₄CH₃

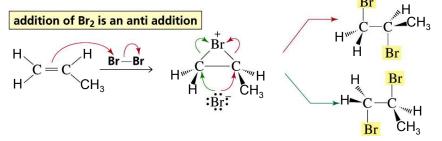
Complete description of products INCLUDES STEREOCHEMISTRY OF ALL.

2B. Stereochemistry of radical hydrobromination

- bromine radical can add to either side of C=C ⇒ 2 possible config's
- then: alkyl radical intermediate can react with H from either side
 (i.e.,: R. abstracts H. via attack from either top or bottom face of C...)

THUS: can form 2 new asymmetric centers, both racemized

- 1st C is racemized (attack from either face of C=C)
- 2nd C is racemized (attack by either face of R·)
 - ⇒ can form maximum of 4 stereoisomers


(7)

2C. Stereochemistry of halogenation of alkenes

- 1st halide atom can add to either side of $C=C \Rightarrow 2$ possible config's
- then: one face of C-C is blocked by large halogen atom so halide nucleophile must add from other side (ANTI ADDITION)

THUS: can form 2 new asymmetric centers

- always 2 possible products: 1st X can go on either side...
- AND always have ANTI addition of halogens
- if 2 C*'s just created are the only ones present in molecule
 ⇒ products will be enantiomers (unless meso...)
- if other chiral centers were already present in the molecule
 ⇒ products will be diastereomers

5.20: Stereochemistry of enzyme reactions

Biochemistry = study of reactions in biological systems

- nucleic acids, carbohydrates, ...
- proteins (e.g., enzymes): composed of chiral amino acids

Biological reactions involve: (not additions of HX, X_2 , BH_3 ...)

- aqueous environment
- acidic (RCOOH) & basic (RNH₂) groups present in proteins
 ⇒ acid-catalyzed reactions of many kinds occur!
- catalysis by enzymes (which are chiral!)
 - ⇒ thus: rxns have preferred reactant stereochemistry

 AND product stereochemistry

(intermediate involved in energy metabolism)

H

COO

$$H_2O$$

fumarase
(enzyme)

OOC

 H

MOREACTION

Fumarase
(enzyme)

OOC

 H
 H_2O

fumarase
(enzyme)

NO REACTION

(9)

Chapter 9: Reactions of Alkanes

Chapter Goals

Appreciate the general unreactive nature of alkanes, plus the conditions that can lead to alkanes reacting.

• Understand mechanism of radical halogenation - including stereochem.

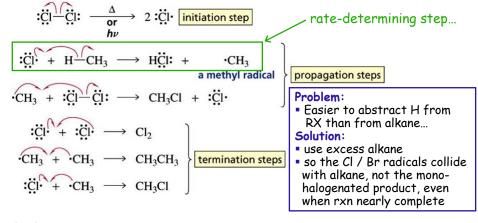
<u>Chapter Outline</u>: (responsible for level of detail presented in the notes)

- 9.1 The low reactivity of alkanes
- 9.2 Chlorination and bromination of alkanes
- 9.3 Factors that determine product distribution
- 9.4 The reactivity-selectivity principle
- [9.5 Radical substitution of benzylic & allylic hydrogens]
- 9.6 Stereochemistry of radical substitution reactions
- 9.7 Reactions of cyclic compounds
- [9.8 Radical reactions in biological systems]
- [9.9 Radicals and stratospheric ozone]

[You are not responsible at all for 9.5, 9.8, 9.9]

9.1 The low reactivity of alkanes

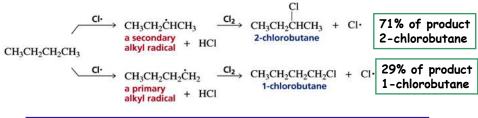
Can we predict the typical reactivity of alkanes?


- nonpolar, with only C-C and C-H σ -bonds
 - \Rightarrow high p K_a s, not electrophilic, not nucleophilic...
- unreactive towards most other substances
- they only react with highly reactive species (or at very high T.)
- 1. Combustion reactions: oxidation via complex radical mechanism large activation energy (needs a spark...) $C_{\nu}H_{\nu} + \frac{\gamma}{2}O_{2} \rightarrow xCO_{2} + \frac{\gamma}{2}H_{2}O$
- 2. Catalytic cracking: breakdown into shorter branched chains
 - → important in petroleum refining
 - → sort of like alkene hydrogenation in reverse, then back again
 - → requires high temperatures & catalysts (i.e., hard to do!)
- 3. Radical halogenation reactions: not-so-complex radical mechanism $C_xH_y+\frac{1}{2}X_2 \rightarrow C_xH_{y-1}X + HX$

(11)

9.2 Radical halogenation of alkanes (by Cl₂, Br₂)

- ${
 m ICl_2}$ & ${
 m Br_s}$ are synthetically useful (${
 m F_2}$ too dangerous; ${
 m I_2}$ too slow)
- \blacksquare High temperature or light needed: to homolytically cleave the X_2 bond
- Use excess alkane (X₂ as L.R.) to minimize dihalogenated product


Mechanism: radical chain reaction (similar to alkene HBr/ROOR rxn)

9.3 Factors that determine product distribution

9.4 The reactivity-selectivity principle

- 1. Radical intermediate involved: (produced in rxn's rate-limiting step)
 - more stable radical intermediates will form faster (lower E ‡)
 - rearrangements do not occur for radicals
 - REGIOCHEMISTRY:
 X prefers to abstract H from (∴ X later adds to...)
 the most highly substituted carbon

Relative rate of formation of R+ by Cl+ at RT: tertiary > secondary > primary 5.0 3.8 1.0

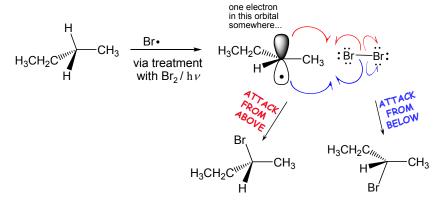
(13)

2. Chlorine atoms (radicals) are more reactive than bromine atoms

- Smaller atom, higher effective nuclear charge
 - ⇒ Cl· has more driving forcer for abstracting H·
 - ⇒ Cl· is more reactive, thus "less selective", than Br·

REGIOSELECTIVITY BASED ON: Reactivity towards that type of H i.e., Relative rates of R. formation: Chlorine radicals Cl· at RT: tertiary > secondary > primary are fast, but unselective! 5.0 → lower yields since many products formed → lots of extra work separating products Br· at 125°C: tertiary > secondary > primary Bromine radicals require higher T, but **very useful** → Higher yield of one increasing rate of formation product

Relative rates can be used to predict product yields:


- Statistics: How many H's of each type (1°,2°,3°...) is present?
- Selectivity: What is X's relative rate of abstraction of each H type?

Approach: Percentage of product halogenated at site of interest = (number of Hs at that type of site) x (reactivity)

(15)

9.6 Stereochemistry of radical substitution

- halogen radical attacks C-H bond ⇒ planar radical intermediate
- then: alkyl radical intermediate can react with X· from either side
 (i.e.,: R· abstracts X· via attack from either top or bottom face of C...)

THUS: can form 1 new asymmetric center, but racemized

⇒ Form maximum of 2 stereoisomers (enantiomers here...)

ASSIGNED READINGS

BEFORE NEXT LECTURE:

Read: Ch.9 material

Practice: predicting products & stereochemistry

(17)