

http://artsandscience.concordia.ca/facstaff/P-R/rogers

(1)

9.7 Radical substitution of cyclic compounds

• No different than acyclic alkanes!

So let's see some examples, cyclic & acyclic:

(2)

Ch.10: Substitution Reactions of Alkyl halides

<u>Chapter Goals</u>

Understand the two basic types of substitution reactions.

Learn the mechanisms of S_N1 & S_N2 rxns - including stereochemistry.

Understand the concept of nucleophilicity and its role in reactions.

- Understand competition between different reaction pathways.
- Understand the effect of solvent on relative reaction rates.

Chapter Outline:

- 10.1 How alkyl halides react
- 10.2 The mechanism of an S_N^2 reaction
- 10.3 Factors affecting S_N2 reactions
- 10.4 The reversibility of an S_N2 reaction
- 10.5 The mechanism of an S_N 1 reaction
- 10.6 Factors affecting S_N1 reactions
- 10.7 More about the stereochemistry of $S_N 1/S_N 2$ reactions
- 10.8 Benzylic, allylic, vinylic and aryl halides
- 10.9 Competition between SN2 and SN1 reactions
- 10.10 The role of solvent in SN2 and SN1 reactions
- [10.11 Biological methylating agents]

(3)

The atom or group that is substituted or eliminated in these rxns is called a *leaving group*

10.1 Alkyl halides react because of polarity

- Polar C-X bond: X δ^- , C δ^+ (X pulls harder on bonding e⁻s)
- Halide can "leave" with the e⁻s, in TWO WAYS:
- 1.) Concerted (one-step) reaction: "S_N2"

 $\begin{array}{cc} \delta^+ & \delta^- \\ \text{RCH}_{2-X}^{-} & X = F, Cl, Br, I \end{array}$

Halide leaving group "LG" pushed off by nucleophile "Nu":

(5)

Because a nucleophile substitutes for the halogen, these reactions are known as nucleophilic substitution reactions

The reaction mechanism that predominates (one-step $S_N 2$ vs. two-step $S_N 1$) depends on:

- the structure of the alkyl halide
- the reactivity of the nucleophile
- the concentration of the nucleophile
- the solvent used for the reaction

10.2 The Mechanism of an S_N2 Reaction

 $CH_3 - OH + :Br$: HO: + CH3 Br: \rightarrow

A single-collision rxn (elementary step) between 2 molecules = "bimolecular"

"SUBSTITUTION NUCLEOPHILIC BIMOLECULAR" = "S_N2"

Consider the kinetics of the reaction:

Rate = k [alkyl halide][nucleophile] a second-order reaction

(7)

EXPERIMENTAL EVIDENCE: How can we tell if a substitution is occurring via the S_N^2 mechanism?

- 1. The rate of the reaction is dependent on concentration of BOTH alkyl halide and nucleophile
- 2. The rate of the reaction with a given nucleophile decreases with increasing size of the alkyl halide

→ Steric effects: Nu must be able to reach the δ^+ C !

3. The configuration at the "attacked" centre is inverted in the product compared to the configuration of the reacting alkyl halide

 \rightarrow only relevant for <u>asymmetric</u> $d^+ C's_{\dots}$

(9)

STERIC HINDRANCE: A bulky substituent in the alkyl halide reduces the reactivity of the alkyl halide

Picture it: can the nucleophile get where it needs to go??

- Nucleophile must make contact with the $\delta^+ C$ atom
- Larger substituents on this C block Nu's access!

relative reactivities of alkyl halides in an S_N2 reaction

relative reactivities of alkyl	halides in an S _N 2 reaction
--------------------------------	---

$\begin{array}{ c c c c c } \hline most & methyl halide > 1^{\circ} alkyl halide > 2^{\circ} alkyl halide > 3^{\circ} alkyl halide < \hline least \\ \hline reactive \\ \hline \end{array}$			
Table 10.1 Relative Rates of S _N 2 Reactions for Several Alkyl Halides			
$R - \frac{Br}{Br} + Cl^{-} \xrightarrow{S_N 2} R - Cl + Br^{-}$			
Alkyl halide	Class of alkyl halide	Relative rate	
CH ₃ —Br	methyl	1200	
CH ₃ CH ₂ —Br	primary	40	
CH ₃ CH ₂ CH ₂ —Br	primary	16	
CH ₃ CH-Br	secondary	1	
CH ₃			
CH ₃			
CH ₃ C ^{-Br}	tertiary	too slow to measure	
ĊH ₃			

(11)

Reaction coordinate diagrams: picturing energetics

- Thermodynamics: products vs. reactants similar in E for both Kinetics: MUCH larger E_a for sterically hindered halide!
- THUS: S_N2 rxn is possible for both, but ONLY OCCURS AT MEASURABLE RATES when have low steric hindrance!

(12)

EXPERIMENTAL EVIDENCE: How can we tell if a substitution is occurring via the S_N^2 mechanism?

- 1. The rate of the reaction is dependent on concentration of BOTH alkyl halide and nucleophile
- 2. The rate of the reaction with a given nucleophile decreases with increasing size of the alkyl halide

→ Steric effects: Nu must be able to reach the δ^+ C !

3. The configuration at the "attacked" centre is inverted in the product compared to the configuration of the reacting alkyl halide

. → only relevant for <u>asymmetric</u> d⁺ C's...

(13)

10.3 Factors affecting S_N2 reactions

- the structure of the alkyl halide (its leaving group)
- the concentration of the nucleophile
- the reactivity of the nucleophile
- the solvent used for the reaction

(15)

THINK ABOUT THIS (as we did at start of term...) Carbon and iodide have the same electronegativity

Why is RI the most reactive, since it's not very polar?

relative reactivities of alkyl halides in an $\ensuremath{\mathsf{S}_{\mathsf{N}}}\xspace^2$ reaction

most reactive RI > RBr > RCl > RF least reactive

Explanation:

- Large atoms are more polarizable than small atoms
- The high polarizability of a large iodide atom causes it to react <u>as if it were polar</u>
 - ...and I⁻ is a very weak base, good at carrying charge...therefore a very good leaving group!

(17)

The nucleophile affects an S_N^2 reaction

- "Nucleophilicity" = a measure of how readily a compound (a nucleophile) is able to attack an electron-deficient atom
 - measured by a rate constant (*k*) ⇒ it is a kinetic parameter

NOT SAME AS

- "Basicity" = a measure of how well a compound (a base) shares its lone pair with a <u>proton</u>
 - measured via acid dissociation constant (K_a)
 ...*i.e.,* for the conjugate acid of the base in question
 - \Rightarrow it is a thermodynamic parameter!

Nucleophilicity & basicity are based on similar phenomena... ...the main practical difference is what you're thinking about the species bonding to: a $\delta^+ C$ versus a H⁺

(18)

Nucleophilicity is affected by Nu's steric demand

- Nucleophilicity is a kinetic parameter
- How <u>quickly</u> can the Nu react with the δ^+ C?
 - \rightarrow depends on access...
 - → big Nu's have trouble squeezing into the back-side attack position of Td C's!

Steric effects influence nucleophilicity, but not basicity

- Acting as a base involves attacking Hs
- Hs are on the periphery of molecules, not buried like δ^+ Cs...
- If want to deprotonate, but not substitute: use a bulky base!

(19)

GETTING A FEELING FOR NUCLEOPHILICITY: When comparing molecules with the <u>same attacking atom</u> (and also similar steric demand...)

STRONGER BASE ⇒ BETTER NUCLEOPHILE

Anions are better nucleophiles than neutral molecules: *i.e.*, the conjugate base is always a better nucleophile than its conjugate acid.

stronger base, better nucleophile

weaker base, poorer nucleophile

OH-	>	H ₂ O
CH ₃ O ⁻	>	ĊĤ₃OH
-NH ₂	>	NH ₃
CH ₃ CH ₂ NH ⁻	>	CH ₃ CH ₂ NH ₂

(20)

When comparing molecules with attacking atoms of approximately the <u>same size</u>:

STRONGER BASE → BETTER NUCLEOPHILE

relative base strengths and relative nucleophilicities

Correlates with:

relative acid strengths

(21)

When comparing molecules with attacking groups that are <u>very different in size</u>, (*e.g.*, comparing group members)

BASICITY ENDS UP <u>NOT</u> BEING THE ONLY FACTOR... Think about POLARIZABILITY of Nu's attacking atom:

(22)

Is polarizability always more important than basicity for determining nucleophilicity?

Depends on reaction conditions:

- In the gas phase: stronger bases always better Nu's (not typical conditions!) ⇒ polarizability ISN'T important...
- IN SOLUTION: polarizability DOES beat out basicity

ASSIGNED READINGS

BEFORE NEXT LECTURE:

- **Read:** Ch.10 up to 10.3
- **Practice:** understanding nucleophilicity