CHEM 221 section 01

LECTURE #24

Thurs., Nov.24, 2005

ASSIGNED READINGS:

TODAY'S CLASS: Finish Ch.10, start Ch.11

NEXT LECTURE: Continue Ch.11

http://artsandscience.concordia.ca/facstaff/P-R/rogers

(1)

10.9 Competition between $S_N^2 \& S_N^1$ reactions

Table 10.5 Comparison of S _N 2 and S _N 1 Reactions		
S _N 2 = BIMOLECULAR	S _N 1 = UNIMOLECULAR RLS	
A one-step mechanism	A stepwise mechanism that forms a carbocation intermediate	
A bimolecular rate-determining step	A unimolecular rate-determining step	
No carbocation rearrangements	Carbocation rearrangements	
Product has inverted configuration relative to the reactant	Products have both retained and inverted configurations relative to the reactant	
Reactivity order: methyl $> 1^{\circ} > 2^{\circ} > 3^{\circ}$	Reactivity order: $3^{\circ} > 2^{\circ} > 1^{\circ} > methyl$	
 ⇒ S_N2 rxns more synthetically useful because they have: predictable stereochemistry predictable regiochemistry 	 ⇒ S_N1 rxns less synthetically useful because they involve: loss of stereochemistry (partial or full racemization) mixed regiochemistry (if >1 carbocation possible or >1 rearrangement possible!!) 	

(2)

For many alkyl halides, BOTH types of rxn can occur...

THUS: the 2 types of substitution are "competing" ...but one will likely be significantly faster than the other Total substitution rate = $k_{SN2}[RX][Nu] + k_{SN1}[RX]$

THIS COMPETITION BECOMES A SERIOUS ISSUE IF THE TWO MECHANISMS YIELD DIFFERENT PRODUCTS!

SO: WHICH TYPES OF ALKYL HALIDES ARE "GOOD AT" BOTH TYPES OF SUBSTITUTION?

Table 10.6Summary of the Reactivity of Alkyl HSubstitution Reactions	lalides in Nucleophilic
Methyl and 1° alkyl halides	S _N 2 only
Vinylic and aryl halides	Neither $S_N 1$ nor $S_N 2$
2° alkyl halides	S_N1 and S_N2
1° and 2° benzylic and 1° and 2° allylic halides	S_N1 and S_N2
3° alkyl halides	S _N 1 only
3° benzylic and 3° allylic halides	S _N 1 only

(3)

Careful selection of rxn conditions helps us control which mechanism will dominate

- 1. Concentration of nucleophile
- Reactivity of nucleophile
 Choice of solvent

S_N2: rate = k_{SN2} [RX] [Nu] Favoured by:

- using high concentration of a good Nu
- using a solvent of lower polarity (see this soon)

S_N1: rate = k_{SN1} [RX] Favoured by:

- using a low [Nu] because these disfavour or
- using a poor Nu $\int_{\text{slow } S_N^2, \text{ so}} S_N^1 \text{ can}$
- using a solvent of compete higher polarity

And recall: protic solvents can "mask" strong bases (*i.e.*, interact strongly & prevent them from acting as good Nu's...)

10.10 The role of solvent in $S_N 2 \ vs. \ S_N 1 \ rxns$

Polar solvents are good at solvating charged species

- due to electrostatic interactions between $\delta + / \delta$ of solvent molecules & full charges of ions
- RESULT: stabilize charged species (including transition states!)
 - \rightarrow carbocations (easier to form in polar solvents)
 - \rightarrow anionic nucleophiles (less reactive in polar solvents)

Nonpolar solvents are good at solvating nonpolar species • due to van der Waals interactions dominating...

- Practical measure of polarity = dielectric constant (ε)

 a measure of how well a solvent can insulate charges from each other (how good at solvating ions...)
 - \rightarrow high ε = high polarity

Solvent	Structure	Abbreviation	Dielectric constant (ε, at 25 °C)	Boiling poin (°C)
Protic solvents				
Water	H ₂ O	_	79	100
Formic acid	НСООН	—	59	100.6
Methanol	CH ₃ OH	MeOH	33	64.7
Ethanol	CH ₃ CH ₂ OH	EtOH	25	78.3
tert-Butyl alcohol	(CH ₃) ₃ COH	tert-BuOH	11	82.3
Acetic acid	CH ₃ COOH	HOAc	6	117.9
Aprotic solvents				
Dimethyl sulfoxide	(CH ₃) ₂ SO	DMSO	47	189
Acetonitrile	CH ₃ CN	MeCN	38	81.6
Dimethylformamide	(CH ₃) ₂ NCHO	DMF	37	153
Hexamethylphosphoric acid triamide	[(CH ₃) ₂ N] ₃ PO	HMPA	30	233
Acetone	(CH ₃) ₂ CO	Me ₂ CO	21	56.3
Dichloromethane	CH ₂ Cl ₂	—	9.1	40
Tetrahydrofuran	$\langle \rangle$	THF	7.6	66
Ethyl acetate	CH ₃ COOCH ₂ CH ₃	EtOAc	6	77.1
Diethyl ether	CH ₃ CH ₂ OCH ₂ CH ₃	Et ₂ O	4.3	34.6
Benzene	\bigcirc	-	2.3	80.1
Hexane	CH ₃ (CH ₂) ₄ CH ₃	_	1.9	68.7

(8)

SUMMARY: Controlling $S_N 2 / S_N 1$ competition

For alkyl halides whose structures allow them to do BOTH $S_N 2 \& S_N 1$ reactions:

If you WANT S_N^2 : use high concentration of a strong, negatively charged Nu in the least polar solvent possible (as long as your reactants will dissolve... likely need to use a polar aprotic solvent)

If you WANT S_N1: use low concentration of weak Nu in the most polar solvent possible (as long as your reactants will dissolve...)

IMPORTANT: consider each case on its own to be more versatile! *i.e.*, charge on transition state of RLS compared to reactants! & suddenly you can think about substitutions of all sorts of LG!

So: where are we?

Reaction pathways: substitutions & eliminations

CHAPTER 11 – Elimination reaction of alkyl halides & Competition between substitution & elimination

Ch.11: Elimination Reactions of Alkyl halides

Chapter Goals

Understand the two basic types of elimination reactions, and the competition between substitution and elimination.

Learn the mechanisms of E1 & E2 rxns - including stereochemistry.

- Understand the competition between different reaction pathways.
- Learn the basics of designing synthetic routes to desired molecules.

Chapter Outline:

- 11.1 The E2 reaction
- 11.2 The regioselectivity of the E2 reaction
- 11.3 The E1 reaction
- 11.4 Competition between E1 and E2 reactions
- 115 Stereochemistry of E1 and E2 reactions
- 11.6 Elimination from cyclic compounds
- [11.7 A kinetic isotope effect]

11.8 Competition between substitution and elimination

- 11.9 Substitution and elimination reactions in synthesis
- 11.10 Consecutive E2 elimination reactions
- 11.11 Intermolecular vs. intramolecular reactions
- 11.12 Designing a synthesis: Approaching the problem
- (13)

The E2 reaction: one-step, bimolecular process 11.1

 $CH_3CH_2Br + HO^- \longrightarrow CH_2 = CH_2 + H_2O + Br^$ ethyl bromide

ĊE

rate = k[alkyl halide][base]

Mechanism of the E2 reaction:

"1,2-elimination" or " β -elimination"

C attached to LG = " α -carbon"; adjacent C is " β " position

ethene

The H on a C adjacent to an electronegative atom (*e.g.*, a halogen) is more acidic than typical H's bonded to C...because a rxn can ensue!

- H at β -position susceptible to attack by a base (B:)
- e⁻s from C-H bond forced to be held by the C \Rightarrow lone pair on C?!
- better to share this e pair with the neighbouring C
- forces leaving group to leave with the C-X bonding pair
- All of the above happens in one concerted process!

(15)

11.2 The Regioselectivity of the E2 Reaction

The major product of an E2 reaction is the more stable alkene (Zaitsev's rule...also known as Saytzeff).

WHY?

- the transition state that results in the formation of the more stable alkene is lower in E (easier to form)
- recall: the more highly substituted the alkene, the more stable it is...

(16)

More highly substituted alkyl halides react faster by E2

relative reactivities of alkyl halides in an E2 reaction

tertiary alkyl halide > secondary alkyl halide > primary alkyl halide

The products shown here are the "Zaitsev products" *i.e.*, the major products (the more stable alkenes)

The less stable alkene product (minor product) will ALSO always form too...just not quite as much.

(18)

(19)

Steric hindrance affects product distribution

• BULKY bases will attack the most accessible H more often

• If <u>hindered</u> alkyl halide too, get <u>less-sub'd</u> alkene as <u>major product</u>

Table 11.1	$\begin{array}{c} CH_3\\ \downarrow\\ CH_3CH-CCH_3 + RO^-\\ \downarrow\\ CH_3 Br\\ \textbf{2-bromo-2,3-dimethyl-butane}\end{array}$	$\begin{array}{c} CH_3 \\ \downarrow \\ H_3C = CCH_3 \\ CH_3 \\ CH_3 \\ 2,3-dimethyl- \\ 2-butene \end{array}$	$\begin{array}{c} CH_3\\ \\ CH_3CHC=CH_2\\ \\ CH_3\\ \textbf{2,3-dimethyl-}\\ \textbf{1-butene}\end{array}$
	Base	More substituted product	Less substituted product
	CH ₃ CH ₂ O ⁻	79%	21%
	CH ₃ CH ₃ CO ⁻ CH ₃	27%	73%
Zaitsev's rule does not predict major	CH ₃ CH ₃ CO [−] CH ₂ CH ₃	19%	81%
(20)	CH ₂ CH ₃ CH ₃ CH ₂ CO ⁻ CH ₂ CH ₃	8%	92%

Another exception to Zaitsev's rule: when F⁻ is the LG

ble 11.2 Products Obtained from the E2 Reaction of CH_3O^- and 2-Halohexanes						
		More su	ubstituted product	Less substituted product		
CH ₃ CHCH ₂ CH ₂ CH ₂ CH	CH ₂ CH ₃ + CH ₃ O [−]	→ CH ₃ CH (mix	=CHCH ₂ CH ₂ CH ₃ - 2-hexene tture of <i>E</i> and <i>Z</i>)	+ CH2=CHCH2CH2CH2CH3 1-hexene		
Dearing group	conjugate actu	pria		100		
X = 1	HI	-10	81%	19%		
X = Br	HBr	-9	72%	28%		
N CI	UCI	7	6701	2201		
$\mathbf{X} = \mathbf{C}\mathbf{I}$	HCI	-/	0170	33%		

Don't worry too much about this: F- isn't a great LG, so we don't use it this way much!

(21)

Special case: For FLUORIDE as leaving group (uncommon)

(22)

E2 reactions: summary

The MAJOR product of E2 elimination will be the MORE STABLE ALKENE:

- most highly substituted (normally) or
- most conjugated alkene (if possible...)

UNLESS

- 1. The reactants are highly STERICALLY HINDERED
- 2. The leaving group is POOR

BEST PLAN:

- 1. Remember that more stable product dominates at eqm... ...but...can't reach eqm if have huge steric effects
- 2. Always think through relative stability of ‡ to predict fastest forming product !

(23)

ASSIGNED READINGS

BEFORE NEXT LECTURE:

- **Read:** Ch.11 up to 11.2
- **Practice:** predicting products & stereochemistry