CHEM 221 section 01

LECTURE #25 Tues., Nov.29, 2005

ASSIGNED READINGS:

TODAY'S CLASS: Continue Ch.11 up to 11.8

Think about date for problem session during exams Dec. 13th? 14th? 15th? 19th?

Problem sets due next class!

NEXT LECTURE: Finish Ch.11

http://artsandscience.concordia.ca/facstaff/P-R/rogers

(1)

11.3 The E1 reaction: unimolecular RLS $\begin{array}{cccc}
CH_3 & CH_3 & rate = k[alkyl halide]\\
CH_3 - C - Br + H_2O \longrightarrow CH_3 - C = CH_2 + H_3O^+ + Br^-\\
CH_3 & 2-methylpropene & tert-butyl bromide$

mechanism of the E1 reaction

 $\begin{array}{cccc} CH_{3} & CH_{3} & CH_{3} \\ CH_{3}-C-Br & & CH_{3}-C^{+} & + & Br^{-} \\ CH_{3} & CH_{3} & CH_{3} & CH_{3} \end{array} \xleftarrow{} CH_{3} + & Br^{-} & \leftarrow \mathsf{RATE-LIMITING\ STEP} \\ \cdot & \mathsf{heterolytic\ C-LG\ bond\ cleavage} \\ \cdot & \mathsf{rate\ } = & k\ [alkyl\ halide] \\ CARBOCATION\ INTERMEDIATE \end{array}$

 $\begin{array}{c} \text{Carbocation intermediate} \\ \text{gets deprotonated by base} \\ \text{at the } \beta\text{-position} \\ (\text{more acidic than typical C-H,} \\ \text{because adjacent to C+ centre...} \\ \text{H}_2 \underline{\hat{O}} \vdots \\ \text{H} \\ \text{like a powerful EWG!} \end{array} \xrightarrow{\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_2 \end{array}} \xrightarrow{\begin{array}{c} \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_2 \end{array}} \xrightarrow{\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_2 \end{array}} \xrightarrow{\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_2 \end{array}} + \\ \text{H}_3 \text{O}^+ \\ \text{CH}_2 \end{array}$

(2)

When carbocation has 2 different β -H's: two possible products (MAJOR = more stable alkene) Zaitsev's rule applies...

Rxn coordinate diagram for E1 rxn of 2-chloro-2-methylbutane

Increase rate of E1 rxn by improving C-LG cleavage step...

Faster E1 reaction if...:

1. More stable carbocation (resonance stabilized / alkyl substituted)

relative reactivities of alkyl halides in an E1 reaction = relative stabilities of carbocations

2. Better leaving group (weaker base!)

relative reactivities of alkyl halides in an E1 reaction

(5)

11.4 Competition Between E2 and E1 Reactions

Table 11.3	Summary of	of the Reactivity of Alkyl Halides in Elimination Reactions
Primary alky	yl halide	E2 only
Secondary a	lkyl halide	E1 and E2
Tertiary alkyl halide		E1 and E2

Same rules learned for substitutions:

- bimolecular rxn: favoured by high conc. of strong base
 E2 in an aprotic polar solvent
- unimolecular rxn: favoured by weak base & protic solvent! E1

E2 offers better control of products, since rxn is concerted E1 offers less control, since rxn involves C+ intermediate

11.5 Stereochemistry of Elimination reactions Stereochemistry of E2:

The bonds to the eliminated groups (H & X) must be coplanar in order to achieve correct overlap of p-orbitals in product \rightarrow THUS: need either "syn" or "anti" conformation:

(7)

(8)

(9)

Stereochemistry of the E1 Reaction

- free rotation about $\beta C-C+$ bond in carbocation
- $\boldsymbol{\cdot}$ means e- pair from departing $H^{\scriptscriptstyle +}$ can attack from either side
 - \rightarrow same result as if both syn & anti elimination could occur
 - → both the (E) & (Z) isomers will form (E favoured due to stability...) AND same whether β-C has 1H or 2H bonded to it!

(12)

• E1 reaction: not concerted .: no conformational requirements

NO NEED TO WORRY ABOUT PREFERRED CONFORMATION. Just worry about:

1. Figuring out which H would be attacked by base (Zaitsev's rule...)

2. Possibility of carbocation rearrangements

(13)

Summary of stereochemistry of rxns of alkyl halides (& other compounds with LGs)...

Table 11.4 Stereochemistry of Substitution and Elimination Reactions				
Mechanism	Products			
S _N 1	Both stereosiomers (R and S) are formed (more inverted than retained).			
E1	Both E and Z stereoisomers are formed (more of the stereoisomer with the bulkiest groups on opposite sides of the double bond).			
S _N 2	Only the inverted product is formed.			
E2	Both <i>E</i> and <i>Z</i> stereoisomers are formed (more of the stereoisomer with the bulkiest groups on opposite sides of the double bond is formed) unless the β -carbon of the reactant is bonded to only one hydrogen, in which case only one stereoisomer is formed, with a configuration that depends on the configuration of the reactant.			

11.8 Co	mpetition b	etween	substit	ution & eli	mination	
How can	we tell which	rxn should	d dominat	re? S _N 2, S _N 1	, E2, E1 ?	
1) Decide → leaving → stabili	if substrate g group: weake ty of carbocat	is likely er base = be ion: resond	to under etter L.G. ance stabi	rgo heteroly lized > 3° > 2°	rtic cleavag > 1°	je
Table 11.5	In an S _N 2 reaction: In an E2 reaction:	$1^{\circ} > 2^{\circ} > 3^{\circ}$ $3^{\circ} > 2^{\circ} > 1^{\circ}$	0	In an S _N 1 reaction: In an E1 reaction:	$3^{\circ} > 2^{\circ} > 1^{\circ}$ $3^{\circ} > 2^{\circ} > 1^{\circ}$	
2) Decide <i>i.e.,</i> • S _N 2/ good	whether rxr will we have to E2 rxns are f nucleophile /	n conditio wait for th avoured by strong bas	ns favou he LG to f a high c e in apro	ur S _N 2/E2 c fall off, or not concentration tic solvents	or S _N 1/E1 ? of	
• S _N 1/ pola	E1 rxns are f r, protic solve	avoured by ents	/ poor Nu	/ weak base	in	

3) Decide which dominates: substitution vs. elimination
 → bulkiness of substrate has opposite effect for S_N2 vs. E2...
 → a base won't be a good nucleophile if it's very bulky...
 → elimination rxns are favoured by <u>elevated temperatures</u>!

(15)

If looks like S_N^2 / E2 are the most likely pathways
To encourage substitution: use a weak base
Cl och du c
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Cl O CH ₃ CHCH ₃ + CH ₃ C-O- Weak base O CH ₃ CHCH ₃ + Cl- Substitution product only!
To encourage elimination: use a bulky base (very poor Nu)
Cl CH ₃ CHCH ₃ + <i>t</i> -BuO ⁻ → CH ₃ CH=CH ₂ + <i>t</i> -BuOH + Cl- bulky strong base Elimination product dominates Very poor Nu - too big! cannot access back-side of <i>& C</i> !

(16)

If looks like S_N1 / E1 are the most likely pathways... Reactions both occur via carbocation intermediate

IMPLIES: no way to select for substitution vs. elimination

- same order of reactivity for SN1 & E1 rxns: 3° > 2° >> 1°
- same rate determining step

→ no difference in <u>rate</u> if change base/Nu strength

ALWAYS GET BOTH SN1 & E1 PRODUCTS TOGETHER!

Summary of all situations:

Class of alkyl halide	S _N 2 versus E2	S _N 1 versus E1
Primary alkyl halide	Primarily substitution, unless there is steric hindrance in the alkyl halide or nucleophile, in which case elimination is favored	Cannot undergo $S_N 1/E1$ reactions
Secondary alkyl halide	Both substitution and elimination; the stronger and bulkier the base, the greater is the percentage of elimination	Both substitution and elimination
Tertiary alkyl halide	Only elimination	Both substitution and elimination

But: 1 last rxn condition we can control: IEMPERATURE (not mentioned in your textbook, but chemists routinely take advantage of this!)

(17)

(18)

ASSIGNED READINGS

BEFORE NEXT LECTURE:

- **Read:** Ch.11 up to 11.8
- **Practice:** predicting products & stereochemistry

(19)