CHEM 221 section 01

LECTURE #26

Thurs., Dec.01, 2005

ASSIGNED READINGS:

TODAY'S CLASS: Finish Ch.11

PLAN A PROBLEM SESSION DURING EXAM PERIOD: Dec.13? Dec.14? Dec.15? Dec.19?

http://artsandscience.concordia.ca/facstaff/P-R/rogers

(1)

11.9 Substitution & elimination rxns in synthesis Classic use of S_N^2 reaction: TO PREPARE ETHERS

ſ	Williamson ether synthesis		
	$\begin{array}{cccc} R - & Br & + & R - O^{-} & \longrightarrow & R - O - R & + & Br^{-} \\ alkyl halide & alkoxide ion & ether \end{array}$		
 Alkoxides are easily & cleanly made by treating ROH with: 			
	sodium metal: ROH + Na \rightarrow RO ⁻ + Na ⁺ + $\frac{1}{2}$ H ₂ (redox rxn) OR		
	sodium hydride: ROH + NaH \rightarrow RO ⁻ + Na ⁺ + H ₂ (acid-base rxn)		
	 Versatile: can use either of 2 combinations of alkyl halide & alkoxide whichever favours the desired S_N2 rxn more (over E2) 		
	$\begin{array}{rcl} CH_3CH_2CH_2Br &+& CH_3CH_2CH_2CH_2O^- &\longrightarrow & CH_3CH_2CH_2CH_2CH_2CH_2CH_3 &+& Br^- \\ \text{propyl bromide} & & & & & & & & & & & & & & & & & & &$		
	$\begin{array}{rcl} CH_3CH_2CH_2CH_2Br &+& CH_3CH_2CH_2O^- &\longrightarrow& CH_3CH_2CH_2OCH_2CH_2CH_2CH_2 \\ & & & & & & & & & & & & & & & & & & $		
	More important if one alkoxide is bulkier Poorer Nu		

To synthesize an ether: see best results if...

• provide the less hindered group via the alkyl halide use bulkier one as alkoxide; otherwise & C's backside is too hindered...

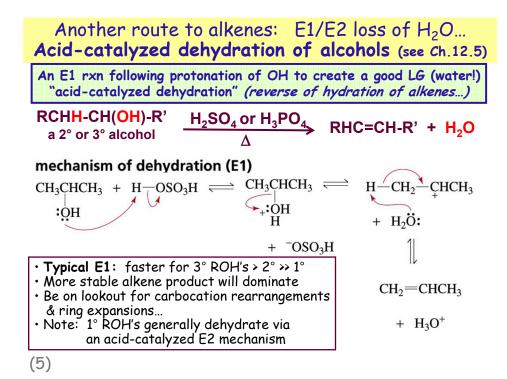
	CH ₃	CH3	
$CH_3CH_2Br + C$	$H_3CO- \longrightarrow Br-$	+ CH ₃ COCH ₂ CH ₃	$+ CH_2 = CH_2$
Not bulky	ĊH ₃	ĊH ₃	Some E2
Easily attacked via backside	Bulky base, so will still get some alkene	Desired ether	side product (t-BuOH too)

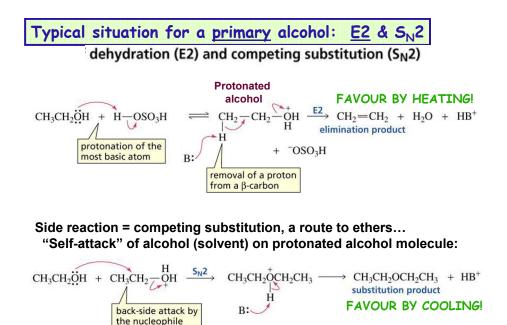
Compare to results if do rxn the other way around:

$\begin{array}{c} CH_{3}\\ CH_{3}CH_{2}O^{-} + CH_{3}CBr \longrightarrow Br-\\ Not bulky, & CH_{3}\\ but still will & Too hindered!\\ not be able to \\ reach backside \\ of the \delta^{*}C \end{array} \qquad $	CH ₃ + CH ₃ C=CH ₂ + CH ₃ CH ₂ OH Won't get ANY of the desired ether! (a good way to make this alkene though!)
--	--

(3)

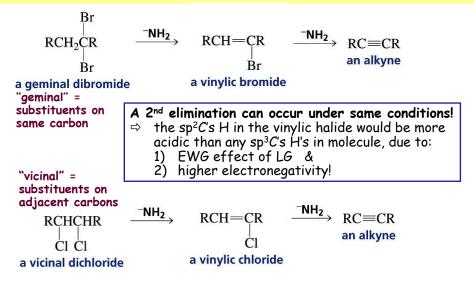
To efficiently synthesize an <u>alkene</u> via loss of HX:


 \cdot use the most hindered alkyl halide possible


EXAMPLE: If we want to prepare propene in the lab: $CH_3CH=CH_2$ • Dehydrohalogenate 2-bromopropane *or* 1-bromopropane?

A good route to the alkene: (hindered halide, plus strong base even better if use strong BULKY base)

A good route to an alcohol: (less hindered halide, OH- as Nu):


 $\begin{array}{cccc} CH_3CH_2CH_2Br &+ &HO^- \longrightarrow &CH_3CH = CH_2 &+ &CH_3CH_2CH_2OH &+ &H_2O &+ &Br^- \\ \mbox{1-bromopropane} & & & \mbox{minor product} & & \mbox{major product} \end{array}$

(6)

11.10 Consecutive E2 elimination reactions

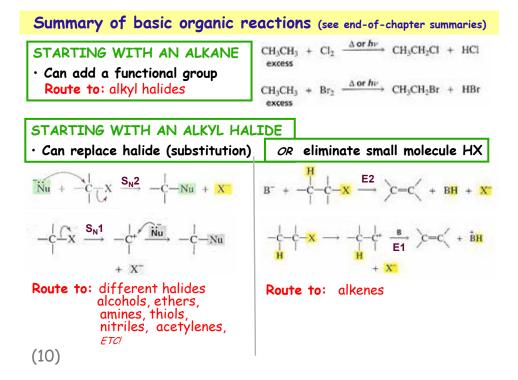
(7)

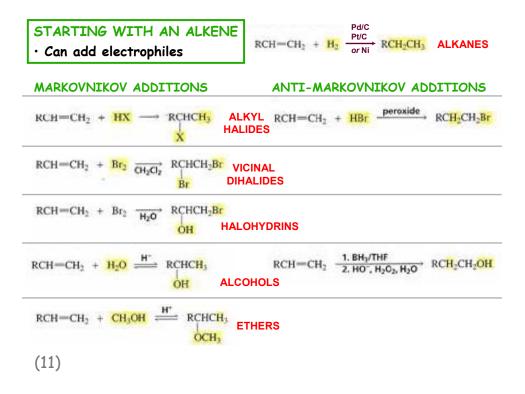
11.11 Intermolecular *vs.* **intramolecular reactions** Intermolecular reactions: typical rxn between 2 molecules

BrCH₂(CH₂)_nCH₂Ö:
Br → CH₂(CH₂)_nCH₂Ö: →
BrCH₂(CH₂)_nCH₂ÖCH₂(CH₂)_nCH₂Ö: + Br⁻
Intramolecular reactions:
Nu & LG within same molecule
lead to "ring closure"
→ USEFUL ROUTES TO CYCLIC CMPDS

$$P_{12}C$$
 $P_{12}C$ $P_{12}C$

rotate) that Nu & LG ends are very unlikely to meet up


11.12: Designing a synthesis (& 4.12) synthetic planning & retrosynthetic analysis


Synthe sis \'sin(t)-the-ses \ noun [Gk, fr. Syntithenai to put together]
1.a the composition or combination of parts or elements so as to form a whole b the production of a substance by the union of chemical elements, groups or simpler compounds or by the degradation of a complex compound c the combining of often diverse conceptions into a coherent whole
2.a deductive reasoning...
"Starting material" = what you start with "SM" "Target molecule" = desired compound
Is there an obvious sequence of rxns that could lead to this product?

- if starting material can only undergo 1 type of rxn: start there!
- remember the tools at your disposal (rxn types, & regio/stereochem)
- often convenient to:

use substitution to switch functional groups use alkene intermediate to switch locations of groups

(9)

Designing a synthesis: (4.12, 6.11, 11.12) synthetic planning & retrosynthetic analysis

OUR GOAL (ideally): SYNTHESIZE THE TARGET MOLECULE USING ...

- fewest # steps possible
- highest yield of desired product possible (intermediate steps too)
- simplest / safest / cheapest / fastest rxns possible

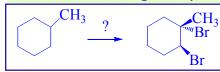
OUR GOALS FOR NOW (we are beginners...):

- use chemically reasonable sequence of rxns (desired product = major)
- if will get a mixture of products at any step, say so!
 - ⇒ would have to purify the product before using in next step

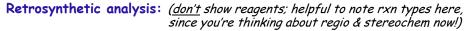
PLANNING OUR SYNTHESIS:

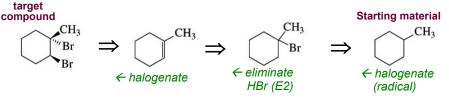
Compare the SM & target molecule
 C skeleton: How do SM & target compare? Any clear "subunits"?
 Functional groups: Any new groups? Any groups present in both?

Choose conditions that won't react with groups that remain unchanged.

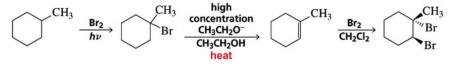

- Is there an obvious set of reactions to get from SM to target?
 Try to add very reactive functional groups near the end.
- 3. If there is no obvious forward plan: try to work backwards! "RETROSYNTHETIC ANALYSIS"

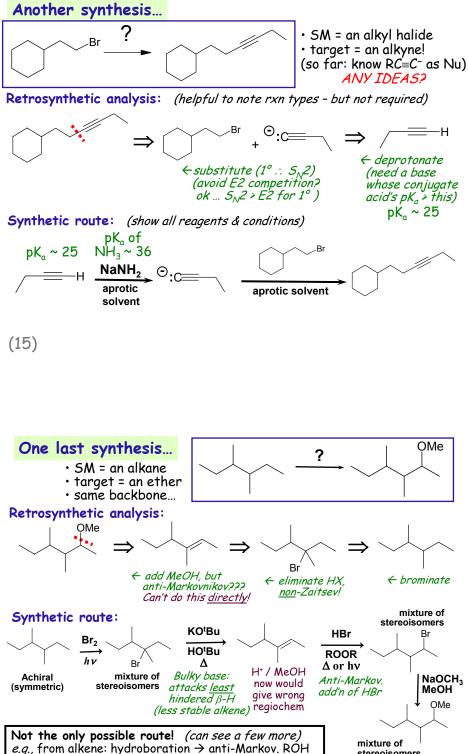
(12)


"Retrosynthetic analysis" (E.J.Corey, organic chemist - Nobel Laureate 1990) Work backwards from the target molecule: (see 6.10 - ignore alkyne rxns) \rightarrow do you know any reactions that product that type of compound? e.g., a particular functional group: an alcohol? Substitution, or hydration of alkene Substitution with Nu = CN a nitrile? Substitution with Nu = HC=C a terminal alkyne? *e.g.,* a particular regiochemistry or stereochemistry: a primary alcohol adjacent to a 2° C? Alkene hydration - anti-Markov. vicinal dihalide with anti orientation? Alkene halogenation Alkene halogenation in water vicinal OH & X (= halohydrin)? a cyclic alkane with trans substituents (.:. cis H's!)? Alkene hydrogenation CONVENTIONAL WAY TO SHOW RETROSYNTHETIC ANALYSES: \rightarrow start with target molecule & work backwards, 1 rxn at a time \rightarrow use open arrows " \Rightarrow " to denote backwards steps \rightarrow once you have a plan: write reactions in forward order & only THEN write in the reagents (NOTE: rxns don't need to balance, & don't include mechanistic details)


(13)

Now we can design a synthesis...





Proposed synthetic route: (show all reagents & conditions here)

(14)

→ deprotonate & react with CH₃I

stereoisomers (due to Br precursor)

(16)

HERE ENDETH ORGANIC I

FINAL EXAM: Tues. Dec. 20th, 2-5pm Loyola GYM

Allowed:	calculator model kit (pre-build a cyclohexane & 2 chiral C's ⇒ quieter)
Not allowed:	programmable calculators cell phones electronic dictionaries (word-to-word translation dictionaries are ok)

(17)