INTRODUCTORY ORGANIC CHEMISTRY II - Chem 222

Instructor Dr. Cerrie W. Rogers

Office hours: Tues.-Fri. 13:15-14:15 (or by appointment) Contact info: SP-201.17, ×5838, crogers@alcor.concordia.ca

Course Format

Lectures: 2.5 h / week, Tues. & Thurs. 10:15-11:30 in SP-5110 4 h / week, starting Sept.10-14th in Lab room SP-112 Labs:

Materials required

- 1) P.J. Bruice, *Organic Chemistry*, 5th Edition (orange & white)
- 2) Bruice's Study Guide & Solutions Manual
- 3) Lab text: J. W. Lehman, Operational Organic Chemistry, 3rd Ed.
- 4) Lab manual: Organic Chemistry II, Dept. of Chem. & Biochem.
- 5) any molecular model kit, PLUS lab coat & safety glasses

Useful resources

- 1) Course website (moodle): lecture slides, handouts, problem sets
- 2) Bruice website <u>http://www.prenhall.com/bruice/details.html</u>
- 3) Other texts (Vanier library reserve): alternate explanations, etc.
- 4) Strategic learning sessions

(1)

INTRODUCTORY ORGANIC CHEMISTRY II - Chem 222

GRADING SCHEME, DEADLINES & ABSENCES

To pass: \geq 50% theory AND \geq 60% laboratory work

Weighting:	Problem Sets: Midterm Exam: Lab Marks:	15%	(due 2 weeks after handout out) (during class <mark>Oct.23</mark>) (reports 15%; lab exam 10%			
INUV.22)	Final Exam:	50%	(3h, December, cumulative)			
Details:	Problem Sets due at <u>beginning</u> of class on the due date. Late submissions will not be accepted. Papers slid under an office door will not be graded. Solutions to the problems will be posted after the due date.					
If absent from an exam/lab: official, signed note (doctor/employer) No later than one week after exam / lab.						
(2)		INO VO	alid excuse produced: zero grade.			

(2)

INTRODUCTORY ORGANIC CHEMISTRY II - Chem 222

LABORATORY INFORMATION -- 4h every week, SP-112

Coordinator: Rita Umbrasas SP-330.01 ×3354 (All questions to her.)

Lab sections: you must attend your **registered** section only *Problems, notes, exemption requests: see Rita ASAP*

Lab absence: max. 1; bring medical/employer note, or receive zero Lab grades: based on quality of the experimental work AND report Lab TA: 1-2 per lab section; get their contact information Preparation: prelab, lab coat & glasses required, or entrance denied

Date:	Experiment No.	Title:	
Mon. Sept. 10 - Fri. Sept. 14	Check In Exp. 4	All Sections Synthesis of Salicylic Acid from Win	tergreen
Mon. Sept. 17 - Fri. Sept. 21	Exp. 9	Isolation and Isomerization of Lycope	ene from Tomato Paste
Mon. Sept. 24- Fri. Sept. 28	Exp.11	Identification of Unknown Ketones	
Mon. Oct. 1 - Fri. Oct. 5	Exp. 7	Preparation of Camphor	
Mon. Oct. 8 - Fri. Oct.12	(No Labs – Thanks	sgiving Holiday)	and so on

INTRODUCTORY ORGANIC CHEMISTRY II - Chem 222

LECTURE INFORMATION: SCHEDULE, READINGS, PROBLEMS

- Use lecture schedule to plan readings & study schedule.
- Print slides (if any) before class, & take DETAILED NOTES in class!
- Read textbook Preface, "To the student" suggestions on how to use textbook & excellent advice on how to study organic chemistry.
- Organic chem. requires daily attention & practice don't just cram!

Class	Date	Topics	Readings	Suggested problems from Bruice	
1	Sept.04	Introduction (Review Chem 221)	(4.12, 6.12, 9.11)	(see Chem 221 past exams on website)	
2	Sept.06	Reactions of alcohols, ethers,	4.9 .10.1-10.12.	Ch.10 #1,5,7,9,11,13,14,15,17,23,31,33,34,	
3	Sept.11	epoxides & sulphur-containing compounds	19.2-19.3	43a-h,44,46,49 (not h),51,52,57,61,64,70,71; Ch.19 #8,10.	
4	Sept.13	Mass spectrometry (MS)	12.1-12.5	Ch.12 #2,3,5,10,12,13,14,15.	
5	Sept.18	Mass spectrometry (MS)	12.1-12.5	$011.12 \pi 2, 0, 0, 10, 12, 13, 14, 13.$	
6	Sept.20	Infrared spectroscopy (IR)	12.6-12.15	Ch.12#19,20,21,22,23,24,29,33,43,45,49,54, 56,58,60,61,65,66,69.	
7	Sept.25	UV/Vis spectroscopy (UV/Vis)	12.16-12.20	Ch.12 #37,46.	
8	Sept.27				
9	Oct.02	Nuclear magnetic resonance	13.1-13.7,13.9-13.14, 13.16-13.17, 13.18	Ch.13 #3,4,5,10,11,12,13,15,17,18,19,21,	
10	Oct.04	spectroscopy (NMR)		27,28,30,32,38,40,41,43,45,46,48,50,54, 56,57,71,72.	
11	Oct.09				
12	Oct.11	Reactions of dienes/delocalized e ⁻ s	7.4-7.12	Ch.7 #17,18,21,25,28,33,36,42,45,55, 68,70,7	
13	Oct 16		71721/11/16		

INTRODUCTORY ORGANIC CHEMISTRY II - Chem 222

STRATEGIC LEARNING (SL) http://learning.concordia.ca/SL_basics.shtml

Research shows: students who attend SL earn higher grades & withdraw less often

- SL leaders: recently taken course themselves, & done well.
 - Role: facilitate collaborative learning among students help develop learning & study strategies that match course integrate how to learn with what to learn use text & lecture notes as tools (they attend class too!)
- SL sessions: outside class time, one hour / week, sometimes more
- Who can go: anyone registered in Chem 222 attendance is voluntary, but highly recommended

Take advantage of this free programme!

(5)

CHEM 222 section 01

LECTURE #01

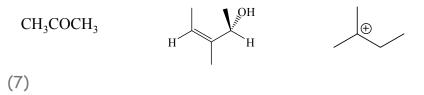
Tues., Sept.04, 2007

INTRODUCTORY ORGANIC CHEMISTRY II

ASAP: Review Chem 221...

- drawing organic structures
- acidity/basicity, nucleophilicity
- reactions: electrophilic additions substitutions, eliminations
- mechanisms: step-by-step e⁻-pushing
- designing a multistep synthesis

http://artsandscience.concordia.ca/facstaff/P-R/rogers


Remembering how to draw organic structures

Remember the rules:

- 2nd row elements cannot exceed octet rule !
- Trends: C (4 bonds), N (3 bonds, 1 LP), O (2 bonds, 2 LP), X (1 bond, 3 LP)
- Against trend: atom will have formal charge +/- open valence
- Most stable structure: minimized formal charges, atoms with full valence

Resonance structures:

- Only lone pairs & π -electrons move (nuclei & σ -bonds stay unchanged)
- Most stable structure contributes most to the resonance hybrid (reality)
- Less stable structures still contribute to reactivity patterns...
- Representing structures: formal charges always shown, but...
 - Kekule structures: Lewis structures without LPs except if involved in rxn
 - Skeletal (line) structures: bonds as lines, C's & H's not shown
 - 3-D drawings: dashes/wedges/lines to visualize geometry & stereochem.
 - Condensed formulae: summarize connectivity without pictures

Remembering functional groups: 1) hydrocarbons

Substituent (hydrocarbon-based group)			Class of compounds		Comments		
(symbol, abbreviation & name)							
(CH ₂) _n CH ₃ or branched	—R	alkyi	$C_{n}H_{n+2}$	Alkanes	See Table 2.2		
— <i>C</i> H ₃			Must know these!				
	—Et	ethyl					
$-(CH_2)_2CH_3$	—Pr	propyl					
-CH(CH ₃) ₂			MUST KNOW THESE!				
-(CH ₂) ₃ CH ₃	—Bu	butyl					
	— <i>t</i> -Bu	<i>tert</i> -butyl					
–CH=CH₂		vinyl	$R_2C=CR_2$] Discussed			
–C≡CH		acetylide	RC=CR		∫ in Chem221		
— <i>C</i> ₆ H ₅	—Ph —	A benzene ring as a substituent	C ₆ H₅R	Aromatic hydrocarbons	Discussed in Chem222		

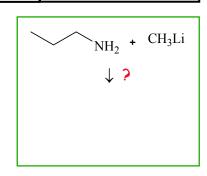
(0)

Functional group		Class of compounds		Descriptors]
(symbol	(symbol & name)		(based on functional gp)			
_×	Halide	R—X		1°	RCH ₂ -X	
				2°	R₂CH-X	
				3∘	R₃C-X	
—он		R—OH	Alcohols	1°	RCH ₂ -OH]
				2°	R₂CH-OH	
				3∘	R₃C-OH	
-NH ₂		R—NH₂	Amines	1°	R-NH ₂	1
-		-		2°	R₂NH [¯]	
				3∘	R ₃ N	
-0-	Оху	R—O—R		Symmetric	R-O-R	1
				Asymmetric	R-O-R'	
0 = _c_	Carbonyl	O II R—C—R	Ketones; or if ≥1 R=H: Aldehydes	O II Acyl R—C—X Ac	halides <i>OR</i> id halides	
о ॥ _с_он	Carboxyl	O II R—C—OH	Carboxylic acids	O II R—C—OR Esters	0 11 R—C—NR ₂ Amides	Chemistry discussed later in Chem222
—C≡N	Cyano	R—C≡N	Nitriles			
-NO ₂	Nitro	R-NO ₂	Alkyl nitrates			

Remembering functional groups: 2) with heteroatoms

Remember the general principle of reactivity: $\delta^-_{-} = \delta^+$ Nucleophiles attack electrophiles

Nucleophiles: "Nu"Electrophiles: "E+"• electron-rich atom or functional group
• lone pair of e- (a base of some sort)?
• polarizable π-electrons (alkenes, etc)?Electrophiles: "E+"• electron-deficient
• empty orbital ?
• positive charge ?• ositive charge ?
• functionally δ+
• E+'s GET ATTACKED


To guess at reactivity:

Draw polarity on molecule!

- If non-polar: identify polarizable e-s
- Can be activated by more reactive rgt

Weak Nu / E+'s are still reactive:

- if presented with <u>stronger</u> E+ / Nu's
- OR at high concentrations
- OR at elevated temperatures

(10)

Remembering	Bruice 8.3					
(nucleophile strength in protic solvents: water, ROH)						
STRONG	MODERATE	WEAK				
(CH ₃ CH ₂) ₃ P:	∷⊜ :Br:	÷.				
[©] :ś-н	СН"-Ё-СН,	A stronger base = a better Nu				
○:C≡N :	:NH _a	Provided: • low steric demand (backside attack)				
(CH₃CH₂)₂ŇH	:ĊI: [©]	not overly screened by the solvent				
[©] :о́-н	·ö·	н-ё-н				
⊜ :ОСН₃	сӊ₅с҄-ӧ҉҈	СН"-О.Н				

TRENDS in basicity & nucleophilicity (except #3: Nu's only, in protic solvent)
A – charged Nu is stronger than a similar neutral species (...more δ⁻).
More electronegative atoms are less nucleophilic (...hold e⁻s tightly).
Larger, more polarizable atoms are more nucleophilic (...shielded less).

.

11

Rememberi	ng relative	acidities: p	K_as (see	Appendix II)
protonated carbonyl groups	+OH ∥ RCOH	α -carbon (aldehyde)	O II RCHCH	
protonated alcohols	$\stackrel{+}{\operatorname{ROH}}_{\operatorname{H}} > < 0$	α-carbon (ketone)	H O I RCHCR	~20
protonated water	нон Н		H Q	
carboxylic acids	© ⊪ RCOH }~5	α -carbon (ester)	RCHCOR H	~25
protonated aniline	+ ArNH ₃	lpha-carbon (amide)	O RCHCN(CH ₃) ₂ H	~30
protonated amines	RNH ₃	hydrogen	Н–Н	35 conj.base H ⁻ used as NaH sodium hydride
phenol .	ArOH	amines	RNH ₂	~40
alcohols	ROH -15	alkanes	RCH ₃	~50
water	H ₂ O	What cou	ld deproto	nate acetone?

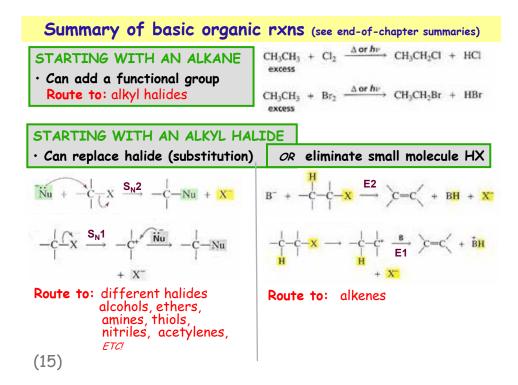
ASSIGNED READINGS:

BEFORE NEXT CLASS: Review Chem 221

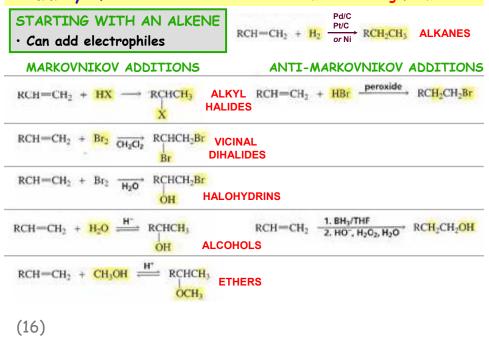
• start next on chemistry of alcohols, ethers, etc

BEFORE FIRST LAB:

- Read Lehman Expt#4 & related Operations
- Note: labs often involve rxns we've not yet studied Lehman usually provides rxn mechanism if not, search in Bruice's index or library texts...


Remember:

Labs start next week: arrive prepared!

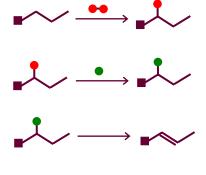

lab coat & glasses completed Expt.#4 prelab

(13) • Chem101 seminars next week (only if you've not done it)

Quick rxn review at start of 2nd lecture... Review details on your own this weekend !

Summary of alkene rxns: what can we make starting from here?

Your organic toolbox so far (+ acid/base chemistry)


BASIC TYPES OF ORGANIC REACTIONS

 Radical halogenation: adds a functional group to alkanes (unreactive!)

2. Substitution: change to a different

functional group

- Elimination: create a π-bond
- Electrophilic addition: use π-bond to add a new functional group (very helpful for switching functional group positions!)

Mixing & matching these types of rxns can provide a variety of routes to our molecules of interest ⇔ versatility! (use trial & error to find best pathway!)

(17)

Designing a synthesis: synthetic planning & retrosynthetic analysis

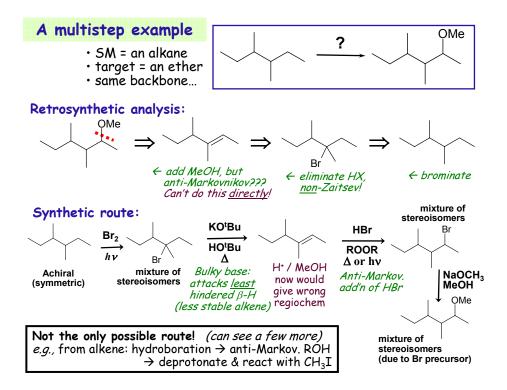
(4.12, 6.11, 11.12)

OUR GOAL (ideally): SYNTHESIZE THE TARGET MOLECULE USING ...

- fewest # steps possible
- highest yield of desired product possible (intermediate steps too)
- simplest / safest / cheapest / fastest rxns possible

OUR GOALS FOR NOW (we are beginners ...):

- use chemically reasonable sequence of rxns (desired product = major)
- if will get a mixture of products at any step, say so!
 - \Rightarrow would have to purify the product before using in next step

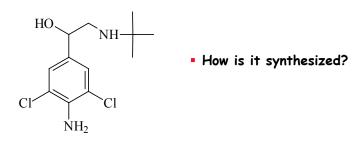

PLANNING OUR SYNTHESIS:

1. Compare the SM & target molecule

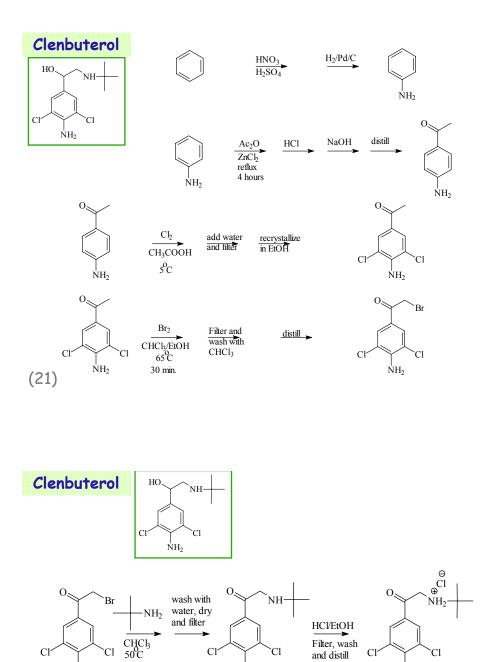
C skeleton: How do SM & target compare? Any clear "subunits"? **Functional groups:** Any new groups? Any groups present in both?

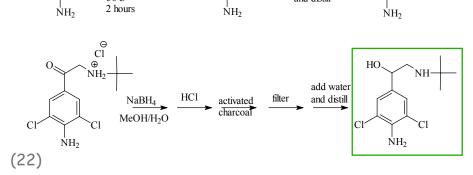
Choose conditions that won't react with groups that remain unchanged.

- Is there an obvious set of reactions to get from SM to target?
 Try to add very reactive functional groups near the end.
- 3. If there is no obvious forward plan: try to work backwards! "RETROSYNTHETIC ANALYSIS"



Clenbuterol


Info. from Wikipedia


A pharmaceutical:

- Recommended usage: decongestant, bronchodilator
- Illegal uses: athletes: non-steroidal anabolic & metabolism accelerator public use: weight loss drug ? agriculture: animal feed additive, enhances leanness
- Toxicity: causes tremors, high blood pressure, increased body temp.

(20)

