CHEM 222 section 01

LECTURE #04

Lecture topics & readings

Today's class

- continue reactions of alcohols: elimination, oxidation

Before next class

- read all of Ch.10
- **practice** in-chapter examples
 - end-of-chapter problems (#43a-h,44,49,52,57,61,71)

Next class

- finish Ch.10 rxns
- on your own: work on rest of problems listed in syllabus

(1)

- 2. REMOVE PRODUCT: $bp_{alkenes} < bp_{ROH} \Rightarrow distill$
- Rxn involves converting OH to good LG
- More highly substituted ROH dehydrate more easily: 3° > 2° > 1°

Gener	al mechanism:	Activat (make <u>c</u>	ion good LG)	+ l (Elin (B:	nination (E1 or E2) takes β-H⁺, LG leaves)
3a)	for 2°& 3°	ROH:	E1 pathv	vay	,	Review 221; on board

(3)

Regiochemistry for alcohol dehydration Review 221: Ch.9

Zaitsev's rule: more highly substituted alkene product dominates

• When >1 alkene could form: major product = most stable alkene Recall:

■ more stable alkene ⇒ ‡ leading to it is more stable (resembles it...)

(4)

Summary: Elimination rxns of alcohols

Most common reagents:

• H_2SO_4 or H_3PO_4 (conc. strong acid with non-Nu anion)

Summary of outcome:

- Substitution rxns compete: yielding ether products...
- More highly substituted ROH dehydrate more easily: 3° > 2° > 1°
- RXN UNDER THERMODYNAMIC CONTROL:
 - Rxn done at elevated temperature for long period of time
 - ⇒ Rearrangements, re-protonation/de-protonation, *etc...*
 - ⇒ System reaches equilibrium
 - ⇒ Most stable alkene product dominates
- (6)

Bruice Problem 15c: Give the major product for...

Bruice Problem 14c: Propose a mechanism for...

ORGANIC OXIDATIONS: "Loss" of e-s...

(9)

Primary alcohols are oxidized to aldehydes...

CH₃CH₂CH₂CH₂OH

a primary alcohol

PCC CH₂Cl₂

CH₃CH₂CH₂CH₂CH

an aldehyde

Milder oxidant stops at aldehyde level: Collins' reagent, "PCC"

soluble in organic solvents (cf: aqueous Cr reagents)

(13)

Give the major product for...

$$OH \xrightarrow{\text{CrO}_3}_{\text{H}_2\text{SO}_4}$$

(14)