CHEM 222 section 01

LECTURE #06

Thurs., Sept.20, 2007

Lecture topics & readings

Today's class

- finish Ch.10: organometallics
- start Ch.12: UV/Vis spectrometry

Before next class

- practice Ch.10 problems
- read

Next class

- finish UV/Vis & move on to IR spectrometry...

(1)

10.12-10.13 Organometallic compounds

Common organometallic reagents:• organomagnesium " Grignard" reagents:RMgBr• organolithium reagents:RLi• organocuprate "Gilman" reagents:RCuLi• 10.13

Organocuprate (Gilman) reagents (don't need to know mechanism for prep rxn)

Transmetallation rxns aka metal-exchange:

R-MgBr R-Li + MXn R-Li + MXn R will exchange metal ions if new M is more electronegative, *i.e.*, M_{Tr}... ⇒ new M-C bond less polar, less reactive

Preparing an organocuprate (Gilman reagent): R-Li + CuI

2 CH ₃ Li	+	$CuI \xrightarrow{\text{THF}}$	(CH ₃) ₂ CuLi	+	LiI
organolithium reagent		or anhydrou diethyl ethe	s Gilman reagent r		driven by pptn highly insoluble.

(5)

Using organocuprates:	coupling R-Xs \rightarrow mor	e complex alkanes
R−X hexane		$\xrightarrow{\text{R'-X}} \text{R-R'}$

Why is this useful?

- one of Gilman reagent's R groups (both same) replaces 2nd halide's X
- works with any alkyl halides, except fluorides
- goes via a poorly understood radical? mechanism
 - works where S_N rxns would not work \Rightarrow can "attack" sp² C's!

Example:

CHARACTERIZATION METHODS - PART I Ch.12: MS, IR spectroscopy & UV/Vis spectroscopy

Chapter Goals & hints

Learn some common tools used to elucidate structures of molecules.

- Learn the basic theory behind how spectroscopic instruments work.
- Learn to identify key spectroscopic signatures of functional groups & other structural information.

Topics Outline: because of labs, order will not match syllabus / textbook...

12.1-5	Mass spectrometry Fragmentation, Isotopes, Molecular formulae, Functional groups
12.6	Spectroscopy & the electromagnetic spectrum
12.7-15	Infrared spectroscopy Characteristic absorption bands due to functional groups Absorption band intensity, position, shape, absence Effects of resonance, EDGs, EWGs, H-bonding Interpreting IR spectra
12.16-20	Ultraviolet/Visible spectroscopy Beer-Lambert law, Effect of conjugation, Understanding colour Common uses of UV/Vis spectroscopy

Frequency (ν) in Hz high frequency low frequency 10¹⁹ 10¹⁷ 10¹⁵ 10¹³ 10¹⁰ 10⁵ High Low Cosmic Ultraviolet Visible Infrared **Radio** waves energy energy γ-rays X-rays Microwaves rays light light radiation NMR 10-6 10-4 10-1 106 10¹⁰ 10² 0.4 0.8 Wavelength (λ) in μ m short long wavelength wavelength wavelength (λ) $E = \frac{hc}{\lambda}$ $\nu = \frac{C}{\lambda}$ Spectroscopy = the study of the interaction of matter & electromagnetic radiation

12.6 Spectroscopy & the electromagnetic spectrum

12.16 UV/Visible spectroscopy: excite molecules with light...

Absorption of UV/visible light:

- promoting an e⁻ to a higher energy level: E_{photon} = ΔE_{energy levels}
 - UV & visible photons ⇒ sufficient E for 2 types of e⁻ transition
 ⇒ in organic molecules with π-electrons

(10) Excited molecule: relaxes (loses E) via vibrations, rotations, etc.

Absorption of visible light causes "colour"

Find colour / wavelengths absorbed ⇒ cross pie to find colour observed

Same info: Table 12.7

650

580

órange

yellow

550

red

Wavelengths absorbed (nm)	Color absorbed	Color observed	Example:
380-460	blue-violet	yellow	• phenolate ion
380-500	blue	orange	$\lambda_{max} = 287 nm$
440-560	blue-green	red	
480–610	green	purple	
540-650	orange	blue	
380-420 and 610-700	purple	green	

Trends in UV/Vis spectra

Organic molecules: π -e⁻ required in order to absorb UV/Vis light...

Chromophore = part of molecule responsible for light absorption

		•	
	Compound	λ_{\max} (nm)	$\varepsilon(M^{-1} cm^{-1})$
Table 12.6	H ₂ C=CH ₂	165	15,000
Ethylene		217	21,000
conjugated		256	50,000
polyenes		290	85,000
		334	125,000

