CHEM 222 section 01

LECTURE #08

Notes may change a little before class Thurs., Sept.27, 2007

Lecture topics & readings

Today's class

- IR spectroscopy (sections 12.6-12.15)

Before next class

- read section on IR spectroscopy in Bruice
- read Lehman's Operation section on IR

Next class

- finish IR
- start mass spectrometry (12.1-12.5)

(1) Helpful website for spectroscopy topics: Michigan State University (1) http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/spectro.htm#contnt

12.7-12.15 Infrared (IR) Spectroscopy = a VIBRATIONAL spectroscopy

cf UV/Vis = an electronic spectroscopy

Vibrational energy levels

- correlate with allowed vibrational frequencies
- separated by ∆E matching IR radiation
 - frequency range: 600 4000 cm⁻¹

Wavenumbers (cm⁻¹) = # waves per cm = frequency unit used for IR

 \overline{v} (cm⁻¹) = $\frac{10^4}{\lambda \ (\mu m)}$ because 1 μm = 10⁻⁴ cm

Higher wavenumbers = larger "spring" force constant stronger bond OR lighter atoms

C–N stretch: 1100 cm⁻¹ $\Rightarrow \lambda = 9.1 \,\mu m$ *C=N stretch:* 1600 cm⁻¹ *C=N stretch:* 2200 cm⁻¹ *C–H stretch:* 3000 cm⁻¹ *C–D stretch:* 2200 cm⁻¹

Typical vibrational modes in complex molecules

Stretching vibrations

symmetric stretch

asymmetric stretch

If a vibration leads to a change in molecule's dipole moment, it is *IR active* :

Larger dipole moment change ⇒ more intense absorption ⇒ larger peak in spectrum

Bending vibrations

symmetric out-of-plane asymmetric out-of-plane bend (twist) bend (wag)

See the textbook website for stretching/bending tutorial...

(3)

(4)

(6)

	Type of bond	Wavenumber (cm ⁻¹)	Intensity				
	C≡N	2260-2220	medium	The second second second second			
	C≡C	2260-2100	medium to weak	Intensity descriptors:			
	C = C	1680–1600	medium	 s, m, w broad (br) sharp (sh) 			
	C = N	1650-1550	medium				
	\bigcirc	~1600 and ~1500–1430	strong to weak	Broad peaks: • hydrogen-bonding			
	C=0	1780–1650	strong	⇒ sample's molecules			
	С-О	1250-1050	strong	won't have exactly			
	C-N	1230-1020	medium	same X-H strength			
	O—H (alcohol)	3650-3200	strong, broad	⇒ distribution of X-H stretching frequencies			
	O—H (carboxylic acid)	3300-2500	strong, very broad	(Details: 12.12)			
	N—H	3500-3300	medium, broad				
	С—Н	3300-2700	medium	1 1 1 1 10			
Higher frequency if:• stronger bond• higher bond order(7)(Details: 12.10)			Hi • } • r	 Higher Intensity IT: higher polarity bond more bonds of that type (Details: 12.9) 			

12.8	Characteristic	IR	bands	of	functional	groups	Table 12.4

12.11 Relative positions of Absorption Bands ⇒ tells about: EDGs, EWGs, delocalization, H-bonding...

Resonance effects: Electron delocalization

- can change bond strength *i.e.*, average bond order
- Iook for other resonance structures case-by-case...
 - including bond/no-bond structures

Fig.12.15-16: Isolated ketone vs. Conjugated ene-one

12.11 Relative positions of Absorption Bands ⇒ tells about: EDGs, EWGs, delocalization, H-bonding...

Inductive effects: Adjacent EDGs or EWGs

Heteroatoms with lone pairs

· 2 possibilities: Resonance e⁻ donation vs. Inductive e⁻ withdrawal

Which effect dominates?

look at typical absorption band positions...

(11)

Fig.12.17-18

12.13,15 Interpretting IR spectra: what is & isn't there?

- 1. Look for key absorptions: identify & rule out functional groups.
- 2. Do not expect to solve a structure using only an IR spectrum.
 Combine IR data with other evidence.
 - BUT: final structure must be consistent with IR data.

12.14 Some vibrations are IR-inactive

If bond has no dipole moment...

• its vibrations won't to a change ⇒ won't absorb IR radiation

