CHEM 222 section 01

LECTURE #11

Tues., Oct.09, 2007

Lecture topics & readings

Today's class

- NMR spectroscopy (Ch.13)

Before next class

- read sections 13.1-7

Next class

- continue NMR

(1)

CHARACTERIZATION METHODS - PART II Ch.13: Nuclear Magnetic Resonance (NMR) Spectroscopy

<u>Chapter Goals & hints</u>

Learn the basic principles of NMR & how to interpret ¹H & ¹³C spectra.

- Learn the basic theory behind how an NMR spectrometer works.
- Learn to extract structural information from ¹H & ¹³C NMR spectra.

Topics Outline:

13.1-2	What NMR involves
13.3-10	Basic information from ¹ H NMR spectra
13.11	Examples of ¹ H NMR spectra
13.12-18	More advanced information from ¹ H NMR spectra
13.19-20	¹³ C NMR
13.21	2D NMR
13.22	MRI

13.1 Nuclear magnetic resonance (NMR) spectroscopy basic principles

- **Result:** with appropriate photons \Rightarrow excite nuclei \Rightarrow flip spins $\alpha \rightarrow \beta$ (3) then measure resulting small changes in overall field
 - 13.2 An NMR spectrometer the basic set-up

An NMR experiment: flip spins, then monitor small field changes...

A 300 MHz NMR spectrometer (like our research instrument)

(5)

http://www.curie.u-psud.fr/U350/1999/photosequipements/bruk306big.jpg

NMR spectroscopy = another absorption spectroscopy

Larger magnet \Rightarrow more sensitive & better resolution

13.4 Shielding: why not all ¹Hs absorb exactly the same frequency

Local field differences due to nearby electron clouds...

(7)

• e-s spin \Rightarrow small mag. fields line up against $B_0 \Rightarrow$ cancel some of B_0

If experience SAME field strength ⇒ absorb SAME frequency

13.4 How many peaks should be in the spectrum? Chemically equivalent ¹Hs appear as the same peak

Each DIFFERENT type of ¹H yields one peak...

...with intensity matching how many H's of that type

Things to remember:

single bonds rotate quickly - faster than NMR data is acquired

π-bonds do NOT rotate

If experience SAME field strength ⇒ absorb SAME frequency

13.5 Chemical shift: frequency relative to reference

Chemical shift δ = how far downfield peak is from TMS...

- **ppm** = parts-per-million shift in frequency
- H₃C CH₃ CH₃C CH₃

= <u>how far downfield from TMS (in Hz)</u> operating freq. of spectrometer (in MHz)

 \Rightarrow peak positions (δ) same on any strength of spectrometer

13.6-7 Characteristic chemical shift values

(11)

13.8 Diamagnetic anisotropy (different in different directions) = why some functional groups look like extreme EWGs

