CHEM 222 section 01

LECTURE #13

Tues., Oct.16, 2007

Lecture topics & readings

Today's class

- finish NMR spectroscopy (Ch.13)

Before next class

- practice interpreting NMR spectra
- practice determining structures from spectral data

Next class

- start reactions of dienes: Ch.7.4-7.12

	Problem set quiz: due on Tues Oct 23	
(4)	Troblem ser quiz: que on rues. Oct. 20	
(1)	Midterm exam: on Tues. Oct. 30	

13.18 Resolution: stronger magnet ⇒ better peak separation

13.13 Splitting diagrams ("trees") explain multiplicity

Complex spin-spin coupling:

non-equivalent Hs couple to each other (if close enough...)

• if >1 type of coupled H ⇒ resulting peak shape can be complicated

THUS: Assign complex multiplets last... & have flexible expectations

(5) From Sigma-Aldrich Co. website: www.sial.com

13.16 Hs bonded to O = "exchangeable"

(9)

13.17 The use of deuterium in ¹H NMR spectroscopy

Deuterium signals do not appear in the 0-12 ppm range

1. Use deuterated solvents

- no extra peaks from solvent in sample's spectrum...
- only see tiny "residual H" peak from 99.9% deuterated CDCl₃, etc see previous spectrum: tiny peak at δ 7.2 ppm

2. Use to identify exchangeable hydrogens

- can exchange OH or NH hydrogens by shaking with H⁺/D₂O
- removes the peaks from spectrum

13.19 ¹³C NMR Spectroscopy ⇒ less info., but useful

Information available: # peaks = # types of Cs

150

⇒ higher frequency

More deshielded (or π -effects)

no integration

200

(11)

- no splitting observed \Rightarrow all singlets (in routine ¹³C spectra)
 - not from other ¹³Cs: low abundance nuclei \Rightarrow 2 per molecule is rare
 - not from ¹Hs: with *decoupled* setting \Rightarrow no ¹H coupling seen

C - O

50

CDCl₃ solvent

(77 ppm)

0

1

TMS

Typical ¹³C chemical shifts (see Table 13.4 for details):

13.20 DEPT ¹³C NMR Spectra ⇒ reveal 1°, 2°, 3°, 4° Cs

100

 δ (ppm)

Covered in more advanced courses:

13.15 Time dependence of NMR spectroscopy

13.21 Two-dimensional NMR

Read for your own interest:

13.22 Magnetic resonance imaging