

LECTURE #16

Thurs., Oct.25, 2007

Lecture topics & readings

Today's class

- aromaticity & describing benzene: Ch. 14.1-8

Before next class - important

- practice drawing resonance structures for aromatics (*e.g.*, furan, cyclopentadienyl anion, benzyl cation...)

Next class

- rxns of benzene: Ch. 14 continued ...

	Midterm exam: Tues Oct 30 (some mult choice some written)
(1)	evenuthing to and of NIMP
(1)	everything to end of think

14.1 The unusual stability of aromatic compounds

Benzene hydrogenation much less exothermic than "cyclohexatriene":

14.2-3 The criteria for aromaticity: Hückel's rule

Draw the resonance structures of: cyclopentadienyl anion

pK_a = 15...

Normal for $H-C_{sp3}$?

Aromaticity is "super-resonance" (not a technical term!)... & has profound effects on reactivity (see 14.5)

14.4 Aromatic heterocyclic compounds: same rules, but...

If putting a lone pair into a p orbital would permit delocalization, atom will hybridize to allow it ⇒ aromaticity is strongly favourable!

Related aromatic heterocycles:

14.6-7 MOs help understand "4n+2 rule" (for general info)

- An aromatic compound = more stable than its localized-e⁻ cyclic analog. 4n+2 π-electrons in an uninterrupted cyclic array
- An anti-aromatic compound = less stable than its localized-e⁻ analog 4n π -electrons in an uninterrupted cyclic array

Frost's trick: $\# \pi MOs = \#$ atoms in ring use vertex positions to estimate Es \rightarrow midline = nonbonding below = bonding

