CHEM 222 section 01

LECTURE #18

Thurs., Nov.01, 2007

Lecture topics & readings

Today's class

- rxns of benzene: Ch. 14.8-15

Before next class

- master the basic electrophilic substitution mechanism
- learn the reagents used to functionalize benzene

Next class

- finish rxns of benzene (Ch. 14)
- start rxns of substituted benzenes (Ch.15)

(1)

If Nu adds to C+...(2) ⇒aromaticity broken

The pathway yielding the aromatic product is favoured...

Progress of the reaction

(3)

14.10 Electrophilic aromatic substitution (S_E , not S_N 1/2)

All follow same 2-step mechanism:

- 1. π -system attacks E⁺ \Rightarrow σ -complex (resonance-stabilized C+)
- 2. deprotonation ⇒ H⁺ removed from C-E⁺ ⇒ restores aromaticity

Benzene's stable π -system only reacts with REALLY STRONG E's...

Mechanism of bromination using Br_2 -Fe Br_3 as E^* :

Catalyst is regenerated:									
$\bar{F}eBr_4$	+	HB^+	\longrightarrow	HBr	+	FeBr ₃	+	: B	

Halogenation of benzene: To make a sufficiently strong E⁺...

Use a Lewis acid catalyst to activate the halogen:

For iodination: use an oxidant instead (such as HNO_3)

14.12 Nitration of benzene: uses sulfuric acid as a catalyst

Mechanism of nitration: using $*NO_2$ as $E^*...$

Catalyst is regenerated: (7)

Do this one on your own at home: direct analogy to nitration 14.13 Sulfonation of benzene: sulfuric acid = E⁺ & catalyst

HÖ−SO₃H + H−OSO₃H ⇒

⁺SO₃H

Catalyst activates $H_2SO_4...$

Sulfonium ion Lewis structure?

Mechanism of sulfonation: using ${}^{+}SO_{3}H$ as $E^{+}...$

Catalyst is regenerated:

Note: Heat is required to drive the sulfonation reaction forward.

Mechanism of acylation: using RC⁺(=O) as E⁺...

(9)

14.15 Friedel-Crafts alkylation: also uses AlCl₃

AlCl₃ activates alkyl chloride: to form "normal" carbocation which may rearrange...

On your own: Mechanism of acylation: using RC^* as E^* ...

Important notes about Friedel-Crafts alkylation:							
1. Low yield for attaching 1° alkyl groups:	since 1° C+ will rearrange						
2. Alkylated Ph more reactive than benzene:	must use excess benzene						
	to avoid over-alkylation						

What Friedel-Crafts product would we expect? (see Prob.26 & 37)

$$\bigcup_{CI} \xrightarrow{O} \frac{1. \text{ AlCI}_3}{2. \text{ H}_2 O}$$

14.16 Alkylation of benzene by acylation-reduction (skip 14.17)

particularly useful for adding linear alkyl groups: no alkyl C+ involved
doesn't require huge excess of benzene: acyl-Ph less reactive than PhH

REDUCTION = conversion to lower oxidation state (reverse of oxidation)

HOW TO REDUCE CARBONYL GROUPS:

- 1. Catalytic hydrogenation: H₂, Pd/C (only for C=O groups on Ph ring)
- 2. Clemmensen reduction: Zn-Hg amalgam, HCl, Δ (if tolerate acid)
- 3. Wolff-Kishner reduction: H_2NNH_2 , HO^- , Δ (if tolerate base) See 17.8 for mechanism

Remember: it is important to have more than 1 way to do a rxn...

14.17 Knowing >1 way to do a rxn is important for synthesis

Functional group compatibility: choose conditions carefully so other parts of your molecule will not undergo undesired rxns...