CHEM 222 section 01

LECTURE #21

Tues., Nov.13, 2007

Lecture topics & readings

Today's class

- finish rxns of benzene derivative: up to 15.10

(not covering rest)

Before next class

- practice synthesis examples
- review Ch.10: organometallics

Next class

- continue rxns of carbonyl compounds (Ch.16-18)

(1)

15.7-8 More practical considerations & SYNTHESIS

Not all substituents have equal influence on reactivity / regiochem: strong activators >> weak activators >> deactivators ortho-para directors >> meta directors

Choose your strategy carefully:

1. Remember steric effects

- even 2C groups hinder substitution at ortho sites...
- attach bulky group 1st ⇒ block ortho sites ⇒ clean para substitution
- 2. Substituent modification vs. further ring substitution?
- pay attention to changes in group's activation/direction ability
- A "blocking" trick: SULFONATION is reversible
- add on −SO₃H to block a site ⇒ then remove it later

(see Problem 15.19)

(3)

Provide a rxn sequence to make these as the major products...

They don't all require "blocking".

(answers next class)

N2(g) readily displaced by many Nu's (mechanism varies, not all understood)

Sandmeyer rxns = copper(I) salt + diazonium salt:

Alternate iodination route:

Compare outcome of our 1^{st} approach: toluene + I_2 /HNO₃

Fluorination route = Schiemann reaction:

To remove an NH₂ group: convert to −N⁺≡N then replace with H using hypophosphorus acid

Provide a rxn sequence to make these as the major products...

(answers next class)

& how would you make the starting materials from benzene / aniline?

REACTIONS OF CARBONYL COMPOUNDS: Ch.16,17,18

Chapter Goals & hints

Understand the reactions of the most important functional group.

- Understand the electrophilic nature of the carbonyl carbon.
- Classify compounds as Class I or Class II & learn the significance: groups bonded to C=O displaceable or not displaceable? • Learn the reactions of Class I and Class II carbonyl compounds.
- Learn to apply these rxns to synthesis & to see biological relevance.

Topics Outline: but not covered in text's order

Ch.16: Nucleophilic acyl substitution Typical rxns of class I carbonyl compounds	except 16.12, 14, 18, 22
Ch.17: Reactions of class II carbonyl compounds Reactions with common nucleophiles Carbon-carbon bond forming reactions	17.1-13 (all)
 Ch.18: Reactions at the α-carbon (8) Enols & enolates, alkylation, condensations 	18.1-16 (1 st ² / ₃)

Table 17.1	Summary of Functional Group Nomenclature			
	Class	Suffix name	Prefix name	
	Carboxylic acid	-oic acid	Carboxy	
	Ester	-oate	Alkoxycarbonyl	
	Amide	-amide	Amido	
	Nitrile	-nitrile	Cyano	
	Aldehyde	-al	Oxo (=O)	
	Aldehyde	-al	Formyl (CH=O)	
	Ketone	-one	$O_{XO} (=O)$	
	Alcohol	-ol	Hydroxy	
	Amine	-amine	Amino	
	Alkene	-ene	Alkenyl	
	Alkyne	-yne	Alkynyl	
increasing	Alkane	-ane	Alkyl	
priority	Ether	_	Alkoxy	
	Alkyl halide	_	Halo	

Carbonyl-derived functional groups = highest priority

	H	H ₂	~40	Do not undergo substitution rxns.
R	R ⁻	RH	>60	

Ketones/aldehydes have more reactive C=O bonds than Class I carbonyls...