CHEM 222 section 01

LECTURE #25

Tues., Nov.27, 2007

Lecture topics & readings

Today's class

- continue rxns of carbonyl compounds (Ch. 18)

Before next class

- PRACTICE Ch.17-18 problems
- PRACTICE synthesis & using protecting groups mechanisms for reactions of enolates

Final class

- our last topic in rxns of carbonyl compounds (Ch. 18)

(1)

(18.3,4,8) Deprotonated CO compounds = ENOLATES = good Nu's

 Making an enolate for synthetic purposes: very strong base (not OH-) get 100% yield of enolate

 Typical reactions of enolates: α -substitution (enolate + E*)

 • Alkylation (18.9):
 Use polarity as a guide!

 0 1 LDA, THF, -78°C

 2 $CH_{3}I$

 1 LDA, THF, -78°C

 2 CI

If don't add an electrophile, and have excess ketone...

(6)

(18.5) α -Halogenation of carbonyl cmpds: enol OR enolate + X_2 **1. To replace ONE** α -H with halide X: acid-cat. α -halogenation (via enol)

3. To oxidize methyl ketone to carboxylate: haloform rxnseen in lab!

- (1) basic α -halogenation \Rightarrow CH₃ \rightarrow CX₃
- (2) excess OH⁻ attacks C=O ⇒ eliminates CX₃⁻
- (3) new RCOOH group deprotonated by CX₃ \Rightarrow haloform + RCOO-

(18.6) α -Halogenation of carboxylic acids: HVZ reaction

If used X_2 / OH⁻ conditions: OH⁻ would de-H⁺ COOH group, not α -H.

- In situ preparation of acid halide
- base-promated halogenation of acid halide's enol

(8)

