Chem 205-GENERAL CHEMISTRY I MIDTERM EXAMINATION

PLEASE READ THIS BOX WHILE WAITING TO START

INSTRUCTIONS:

- Calculators are permitted; cell phones and other electronic devices are not allowed.
- This test paper includes 8 pages; please read over the whole test before starting.
- Potentially useful information and a periodic table (incomplete) are included.
- You may detach the periodic table page for easier reference if you wish.
- Please write clearly and organize your work logically.
- Read the instructions to each section carefully.
- Duration: 70 minutes. GOOD LUCK!

Mark breakdown:

Page 2.	$/ 10$
Page 3.	$/ 15$
Page 4.	$/ 8$
Page 5.	$/ 8$
Page 6.	$/ 12$

$\mathcal{T O} \mathcal{T A L}: \quad / 52 \quad(\mathcal{M A X I} \mathcal{M} \mathcal{U M} \mathcal{M A R} \mathcal{K}=53)$
PERCENNT: $\quad \%$
\qquad
Dr. C. Rogers, Section 02 W/F

PART A: ONLY YOUR FINAL ANSWER WILL BE MARKED

\# 1. (2 marks) The figures below represent four different samples of gas-phase matter. Which figure represents a pure compound?
a) A
b) B
c) C
d) D
e) They all do.

\# 2. (2 marks) Consider the following statement: "The degree of agreement among several measurements of the same quantity reflects the reproducibility of the given type of measurement." What concept does this statement describe?
a) error
b) certainty
c) precision
d) accuracy
e) significance
\# 3. (2 marks) The statements below summarize various scientists' contributions to the understanding of atomic structure. Which statement incorrectly describes the scientist's work?
a) J.J. Thomson proposed the plum-pudding model of the atom, based on his cathode-ray tube experiments.
b) The Curies showed that atoms cannot be subdivided, based on their experiments involving radioactivity.
c) J. Dalton proposed his atomic theory, in which he (incorrectly) postulated that all atoms of the same element are identical.
d) R. Millikan determined the charge and mass of the electron, using his "oil-drop" experiments.
e) E. Rutherford proposed the nuclear model of the atom, based on his gold-foil experiments.
\# 4. (2 marks) The reaction between reactant A (smaller spheres) and reactant B (larger spheres) is shown in the diagram below. Based on the diagram, which equation best describes the reaction?
a) $\mathrm{A}_{2}+\mathrm{B} \rightarrow \mathrm{A}_{2} \mathrm{~B}$
b) $2 \mathrm{~A}+\mathrm{B}_{4} \rightarrow 2 \mathrm{AB}_{2}$
c) $A_{2}+4 B \rightarrow 2 \mathrm{AB}_{2}$
d) $\quad A+B_{2} \rightarrow A B_{2}$
e) $\quad \mathrm{A}+\mathrm{B}_{2} \rightarrow \mathrm{~A}_{2} \mathrm{~B}$

\# 5. (2 marks) What is the concentration of manganese ions in a 2.0 M solution of $\mathrm{Mn}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?
a) $6.0 \mathrm{~mol} / \mathrm{L}$
b) $4.0 \mathrm{~mol} / \mathrm{L}$
c) $3.0 \mathrm{~mol} / \mathrm{L}$
d) $2.0 \mathrm{~mol} / \mathrm{L}$
e) $1.0 \mathrm{~mol} / \mathrm{L}$
\qquad
Dr. C. Rogers, Section 02 W/F
\# 6. (4 marks) Identify the following statements as true or false. (Circle T or F.)
T / F When salt dissolves in water, the result is a homogeneous mixture.
T / F Most elements on the periodic table are classified as nonmetals.
T / F Elemental sulfur exists as gas-phase diatomic molecules.
T / F A change in colour always indicates a chemical change.
\# 7. (4 marks) Fill in the blanks:
a) The melting point of lead (600.61 K) on the Celsius scale is:
b) An element that tends to gain electrons during reactions is: \qquad
c) The number of protons in an ${ }^{75} \mathrm{As}$ (arsenic-75) atom is: \qquad
d) The name of the phase change from solid to gas: \qquad
\# 8. (4 marks) Write the missing name or formula, and classify each substance by type:

Substance name	Substance formula	Ionic or molecular substance?
potassium perchlorate		
	$\mathrm{S}_{2} \mathrm{O}_{3}$	
copper (II) phosphate		
	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	

\# 9. (3 marks) Determine the volume of liquid present in each graduated cylinder, and report your measurements with the correct number of significant figures for the equipment. Next, add the two volumes together, and indicate what determined the number of significant figures in the total volume.

Volume A:
Volume B:
Total volume \& comments (few words only!):

CHEM 205 Fall 2009 MIDTERM EXAM
Student ID \#: \qquad Dr. C. Rogers, Section 02 W/F

PART B: Short written answers

\# 10. (4 marks) Pure acetic acid, known as glacial acetic acid, is a liquid with a density of $1.049 \mathrm{~g} / \mathrm{mL}$ at $25^{\circ} \mathrm{C}$. Calculate the molarity of a solution of acetic acid made by dissolving 25.00 mL of glacial acetic acid at $25^{\circ} \mathrm{C}$ in enough water to make 125.00 mL of solution.
\#11. (4 marks) When elemental calcium is reacted with elemental fluorine, a white solid commonly known as the mineral fluorite is formed.
a) (1 mark) Is the product ionic or molecular in nature? How do you know?
b) (1 mark) Write a balanced chemical equation for this reaction.
c) (2 marks) Briefly explain the concept of electroneutrality and how it helped you determine the formula of the compound formed in the above reaction.

CHEM 205 Fall 2009 MIDTERM EXAM
Dr. C. Rogers, Section 02 W/F

PART C: Problems - SHOW COMPLETE WORK TO GET FULL CREDIT

\# 12. (8 marks) An element X forms an iodide XI_{3} and a chloride XCl_{3}. The iodide is quantitatively converted (i.e., with 100% yield) to the chloride when it is heated in a stream of chlorine gas:

$$
2 \mathrm{XI}_{3}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{XCl}_{3}+3 \mathrm{I}_{2}
$$

If 0.5000 g of XI_{3} is treated, 0.2360 g of XCl_{3} is obtained. Calculate the atomic mass of the element X , and identify the element. Include explanatory comments at each step of your calculation.
\qquad
Dr. C. Rogers, Section 02 W/F
\# 13. (12 marks) The fizz produced when an Alka-Seltzer® antacid tablet is dissolved in water is due to the reaction between sodium bicarbonate, NaHCO_{3}, and citric acid, $\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$:
$3 \mathrm{NaHCO}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(\mathrm{aq}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathbf{I})+\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(\mathrm{aq})$
In a certain experiment, imagine you mix 2.00 g of sodium bicarbonate and 2.00 g of citric acid.
a) (10 marks) Assuming the reaction proceeds with 100% yield, how many grams of CO_{2} form? Include explanatory comments with your calculations.
b) ($\mathbf{2}$ marks) Calculate how much excess reactant remains after the reaction is complete.

CHEM 205 Fall 2009 MIDTERM EXAM
Student ID \#: \qquad
Dr. C. Rogers, Section 02 W/F

POTENTIALLY USEFUL INFORMATION

Atomic mass unit: $1 \mathrm{amu}=1.66054 \times 10^{-27} \mathrm{~kg} \quad$ Avogadro's number: $\mathrm{N}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

EXTRA SPACE FOR ROUGH WORK - WILL NOT BE MARKED

CHEM 205 Fall 2009 MIDTERM EXAM
Student ID \#: \qquad
Dr. C. Rogers, Section 02 W/F
PERIODIC TABLE OF THE ELEMENTS - missing $1^{\text {st }} 20$ elements
(this will not be graded)

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\mathbf{L a}$	$\mathbf{C e}$	$\mathbf{P r}$	$\mathbf{N d}$	$\mathbf{P m}$	$\mathbf{S m}$	$\mathbf{E u}$	$\mathbf{G d}$	$\mathbf{T b}$	$\mathbf{D y}$	$\mathbf{H o}$	$\mathbf{E r}$	$\mathbf{T m}$	$\mathbf{Y b}$	$\mathbf{L u}$
138.91	140.12	140.91	144.24	(145)	150.35	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
$\mathbf{A c}$	$\mathbf{T h}$	$\mathbf{P a}$	\mathbf{U}	$\mathbf{N p}$	$\mathbf{P u}$	$\mathbf{A m}$	$\mathbf{C m}$	$\mathbf{B k}$	$\mathbf{C f}$	$\mathbf{E s}$	$\mathbf{F m}$	$\mathbf{M d}$	$\mathbf{N o}$	$\mathbf{L r}$
227.03	232.04	231.04	238.03	(237)	(245)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

