NUMERICAL ANSWERS TO ASSIGNED TUTORIAL PROBLEM SETS FOR CHEM205 FROM KOTZ & TREICHEL'S CHEMISTRY & CHEMICAL REACTIVITY, **6**th **Ed.** NOTE: none of the answers from Ch.10 have been verified. Please report any errors. | Ch. | Q# | Comments | |----------------|----------------------|--| | 10 | 2 | NF ₃ : 26 valence ēs; electron-pair geometry = tetrahedral; molecular geometry = trigonal pyramidal. The N atom is sp³-hybridized. Three of these sp³ hybrid orbitals each overlap with a fluorine 2p orbital to form three N-F sigma (single) bonds; the N's fourth sp³ hybrid orbital contains a pair of nonbonding electrons (a lone pair). | | 10 | 4 | (a) CSe_2 : sp; (b) SO_2 : sp ² ; (c) CH_2O : sp ² ; (d) NH_4^+ : sp ³ | | 10 | 6a
6b
6c | N (both, actually): sp ³ ; C: sp ²
C of CH ₃ : sp ³ ; C of C=C and C=O: sp ²
C of C=C: sp ² ; C of C to N triple bond: sp | | 10 | 8a
8b
8c
8d | XeOF ₄ : electron pair geometry: octahedral, molecular geometry: square pyramidal, sp^3d^2 . BrF ₅ : electron pair geometry: octahedral, molecular geometry: square pyramidal, sp^3d^2 . SOF ₄ : electron pair geometry: trigonal bipyramid, molecular geometry: trigonal bipyramidal, sp^3d . Br ₃ ⁻ : electron pair geometry: trigonal bipyramid, molecular geometry: linear, sp^3d . | | 10 | 10a
10b | $HOSO_2F$: 32 valence e ⁻ , "electron pair geometry" and molecular geometry at sulfur is tetrahedral: sp^3 . SO_3F^- : same as part (a). | | 10 | 12 | SO ₂ F ₂ : electron pair geometry: tetrahedral, molecular geometry: tetrahedral, sp ³ . | | 10 | 24 | CIF ₂ ⁺ : electron pair geometry: tetrahedral, molecular geometry: bent, sp ³ : 109°. CIF ₂ ⁻ : electron pair geometry: trigonal bipyramid, molecular geometry: linear, sp ³ d: 180°. | | 10 | 26 | The resonance structures are in the text. They all have the same ${\sf sp}^2$ (trigonal) hybridization. The unused 2p-orbital on N is used to make the pi-bond. | | 10 | 28 | CO_2 : hybridization: linear - sp, bond angle: 180° , C to O bond order: 2. CO_3^{2-} : hybridization: trigonal - sp ² , bond angle: 120° , C to O bond order: 4/3. | | 10 | 32a
32b | Angle A = 120° ; angle B = 109° (actually will be distorted because of lone pairsto approx. 105°); angle C = 109° ; angle D = 120° . Carbon 1: sp^2 ; carbon 2: sp^2 ; carbon 3: sp^3 . | | 10
10
10 | 34a
34b
34c | 1 π -bond, 11 σ -bonds $C(1) = sp^3$, $C(2) = sp^2$, $C(3) = sp^3$ The C=O bond is the shortest and strongest CO bond. | | 10
10 | 36a
36b | Structure: N (with lone pair) is bonded to 2 H's & S; S also bonded to three O's. The angles around N & S are approximately 109° (tetrahedral). The hybridization of the N atom does not change (sp 3 in NH $_2$ $^-$ and in H $_2$ N-SO $_3$ $^-$). The S atom hybridization changes from sp 2 in SO $_3$ to sp 3 in H $_2$ N-SO $_3$ $^-$. | | Ch. | Q# | Comments | |----------------|---------------------------------|---| | 10 | 40 | XeO ₃ : electron pair geometry: tetrahedral - sp ³ , molecular geometry: trigonal pyramidal. XeO ₄ : electron pair geometry: tetrahedral - sp ³ , molecular geometry: tetrahedral. | | 10 | 46a
46b
46c
46d
46e | C_6 ring C atoms: sp^2 ; side chain C atoms sp^3 ; N atom: sp^3 . angle A = 120° ; angle B = 109° ; angle C = 109° . (actually will be lessbecause of lone pair occupying more space than bonding pairs) 23 sigma-bonds and 3 pi-bonds. The molecule is polar. The H^+ ion attaches to the most electronegative atom in the molecule, <i>i.e.</i> N. | | 10
10
10 | 52a
52b
52c | CF_4 is isoelectronic with BF_4^- (32 valence electrons)
SiF ₄ (32 valence electrons) and SF ₄ (34 valence electrons) are not isoelectronic.
BF_4^- : B is sp ³ ; SiF ₄ : F is sp ³ ; SF ₄ : S is sp ³ d. |