NUMERICAL ANSWERS TO ASSIGNED TUTORIAL PROBLEM SETS FOR CHEM205 FROM KOTZ & TREICHEL'S CHEMISTRY & CHEMICAL REACTIVITY, **6th Ed.**

NOTE: none of the answers from Ch.8 have been verified. Please report any errors.

Ch.	Q#	Comments
8	2	Mg: 1s ² 2s ² 2p ⁶ 3s ² Mg in group 2A, has 2 e ⁻ s in outer shell (2 valence e ⁻ s) Ar: 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ Ar in group 8A, has 8 e ⁻ s in outer shell (8 valence e ⁻ s)
8	6a 6b 6c 6d	Sr: [Kr] $5s^2$ Zr: [Kr] $4d^2 5s^2$ Rh: [Kr] $4d^7 5s^2$ but actually observed as [Kr] $4d^8 5s^1$ Sn: [Kr] $4d^{10} 5s^2 5p^2$
8	12a 12b 12c 12d	draw orbital boxes for: Na ⁺ : $1s^2 2s^2 2p^6$ draw orbital boxes for: Al ³⁺ : $1s^2 2s^2 2p^6$ draw orbital boxes for: Ge ²⁺ : $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2$ draw orbital boxes for: F ⁻ : $1s^2 2s^2 2p^6$
8 8	16 16	draw orbital boxes for: Ni ²⁺ : [Ar] $3d^8 4s^0 \rightarrow$ paramagnetic draw orbital boxes for: Ni ³⁺ : [Ar] $3d^7 4s^0 \rightarrow$ paramagnetic
8	20a 20b 20c 20d	18 e ⁻ 10 e ⁻ 1 e ⁻ none; when ℓ =0, m _{ℓ} can only have value of 0
8	22	P: [Ne]3s ² 3p ³ with 1e ⁻ in each of the p orbitals n=3, $\ell = 0$, $m_{\ell} = 0$, $m_{s} = +\frac{1}{2}$ n=3, $\ell = 0$, $m_{\ell} = 0$, $m_{s} = -\frac{1}{2}$ n=3, $\ell = 1$, $m_{\ell} = -1$, $m_{s} = +\frac{1}{2}$ n=3, $\ell = 1$, $m_{\ell} = 0$, $m_{s} = +\frac{1}{2}$ n=3, $\ell = 1$, $m_{\ell} = +1$, $m_{s} = +\frac{1}{2}$
8	26	P < Ge < Ca < Sr < Rb
8	28a 28b 28c	Cs > Rb O ²⁻ > O As > Br
8	32a 32b 32c 32d	Al Al C (based on periodic trends); Si (according to experimental data) Al < B < C
8	34a 34b	F < O < S trend: increase across period, decrease down group based on trends: predict highest I.E. for S. However, I.E. of O < N, and same thing observed for 3 rd row> real I.E. order = Si < Se < S < P

Ch.	Q#	Comments
8	34c	$F^- < O^{2-} < N^{3-}$ isoelectronic; size decreases as eff. nucl. charge increases
8	34d	Cs < Ba < Sr trend: increase to right, decrease down table
8	38a	draw orbital boxes for: Ce: [Xe] 4f ¹ 5d ¹ 6s ²
8	38a	draw orbital boxes for: Ce ³⁺ : [Xe] 4f ¹
8	38b	draw orbital boxes for: Ho: [Xe] 4f ¹¹ 5d ⁰ 6s ²
8	38b	draw orbital boxes for: Ho: [Xe] 4f ¹¹
8	42	n = 4, ℓ = 1, m _{ℓ} = -1, m _s = + ¹ / ₂
		$n = 4, \ell = 1, m_{\ell} = -1, m_{s} = -\frac{1}{2}$
		$n = 4, \ell = 1, m_{\ell} = 0, m_{s} = +\frac{1}{2}$
		$n = 4, \ell = 1, m_{\ell} = 0, m_{s} = -\frac{1}{2}$
		$n = 4, \ell = 1, m_{\ell} = -1, m_{s} = +\frac{1}{2}$
		n = 4, ℓ = 1, m _e = -1, m _s = - $\frac{1}{2}$
8	44a	phosphorus
8	44b	beryllium
8	44c	nitrogen
8	44d	technetium
8	44e	chlorine
8	44f	zinc
8	48	a = alkaline earth metal; b = nonmetal (halogen); c = B; d = B.
8	52a	$Ca^{2+} < K^+ < Cl^-$
8	52b	$C\Gamma < K^+ < Ca^{2+}$
8	52c	$CI^- < K^+ < Ca^{2+}$
8	56a	V, vanadium
	56b	group 5B, period 4
	56c	transition element
	56d	paramagnetic, 3 unpaired e ⁻ s
	56e	n = 3, ℓ = 2, m _{ℓ} = -2, m _s = + ¹ / ₂
		$n = 3, \ell = 2, m_{\ell} = -1, m_{s} = +\frac{1}{2}$
		$n = 3, \ell = 2, m_{\ell} = 0, m_{s} = +\frac{1}{2}$
		$n = 4, \ell = 0, m_{\ell} = 0, m_{s} = +\frac{1}{2}$
		$n = 4, \ell = 0, m_{\ell} = 0, m_{s} = -\frac{1}{2}$
8	60	I.E. increases across P.T. and decreases down P.T.
		decrease occurs because e farther from nucleus, & electrostatic attractions
		between + nucleus and - electrons is distance dependent
8	64	Ca is smaller than K (Ca's valence e-s feel higher effective nuclear charge, Z^*) $\Rightarrow 1^{st}$ IE Ca > 1^{st} IE K. After 1^{st} ionization: K ⁺ has noble gas configuration. K ⁺ 's valence e ⁻ s are in a lower energy shell (n=3 instead of n=4) so are closer to the nucleus, what we consider part of the potassium atom's electron <u>core</u> . Thus, removing the 2^{nd} e ⁻ requires much more E than removing the 1^{st} e ⁻ . Ca can lose a 2^{nd} e ⁻ more easily because this 2^{nd} e ⁻ comes from the same energy level (n=4 shell) as the 1^{st} ; the resulting Ca ²⁺ has a noble gas configuration. Make sure you properly assign cause & effect: it's not that forming a noble gas configuration is particularly easy, it's that breaking a noble gas configuration (e.g., K ⁺ \rightarrow K ²⁺ + e ⁻) is
		so much <u>more difficult</u> because of the lower E of the e ⁻ you are trying to remove and because of the increase in effective nuclear charge felt by this e ⁻ (<i>e.g.</i> , K^{2+} has higher Z* than K^{+}).

Ch.	Q#	Comments
8	68	The 5 th & 6 th period transition metals have similar atomic radii. The 6 th period transition metals have a higher mass per atom, which results in a higher density for the 6 th row transition metals (assuming the atoms pack together in similar arrangements without any huge empty spaceswhich they do)
8	72a	reducing agent = Na. Sodium has low I.E., which plays a major role in making it good at reducing other substances.
8	72b	oxidizing agent = Cl ₂ . Chlorine has high E.A., which helps in this role
8	72c	Na ₂ Cl would have a Cl ²⁻ ion. Adding a 2 nd e ⁻ to Cl ⁻ would involve putting an e ⁻ into a higher energy level (higher n value electron shell), which is energetically unfavourable. Conversely, NaCl ₂ would contain a Na ²⁺ ion. This would require removing an e ⁻ from Na's core, which is also energetically unfavourable (see #64).